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Abstract
This investigation presents the design, simulation, and performance analysis of a terahertz-based biosensor for hemoglobin 
detection. The sensor architecture incorporates a synergistic combination of graphene, gold, and silver metasurfaces in a 
hierarchical resonator structure. Extensive parametric analysis was conducted to optimize the sensor's performance char-
acteristics. The optimized sensor demonstrates high sensitivity, achieving up to 1000 GHzRIU−1, with a figure of merit of 
3.289 RIU−1. Experimental results indicate effective detection of hemoglobin concentrations ranging from 10 to 40 g/L, 
corresponding to refractive indices between 1.34 and 1.43. Electromagnetic field distribution analysis exemplifies peak 
absorption at 0.65 THz. Furthermore, the sensor’s potential for binary encoding applications was evaluated with remarkable 
performance. Machine learning optimization, employing a decision tree regressor, demonstrates an optimal R2 score of 100% 
across various parameter combinations, suggesting potential for the development of accurate sensing systems. The proposed 
sensor design represents a significant advancement in terahertz biosensing technology, with implications for enhanced medi-
cal diagnostics and biomedical research applications.

Keywords  Optical sensing · Binary encoding · Machine learning optimization · Plasmonic resonance · Electromagnetic 
field confinement · Sensor

Introduction

Biosensors have become a crucial focus in medical diagnos-
tics and health monitoring research [1]. These devices inte-
grate biological recognition elements with physicochemical 
detectors to analyze and quantify biomolecular levels across 
different sample types [2]. Various types of biosensors have 
been developed for different applications, each tailored with 
unique advantages and applications [3]. Electrochemical 
biosensors are widely used in detecting electrical changes 
generated when biomolecules interacts with the sensor’s 
components [4]. Optical biosensors rely on alterations in 
properties like absorbance or fluorescence to identify pres-
ence of biomolecules [5]. Piezoelectric biosensors detect 
shifts in mass on their surface caused by analyte binding [6]. 
The identification components employed in these biosen-
sors are pivotal for their accuracy and responsiveness [7]. 
Antibodies are extensively employed in immunosensors due 
to their exceptional specificity towards analytes [8]. Recent 
advancements in biosensors for biomedical applications have 
concentrated on enhancing their effectiveness and ease of 
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use. By integrating nanomaterials like graphene, carbon 
nanotubes, and metal nanoparticles, sensor sensitivity and 
specificity have been significantly improved [9]. Addition-
ally, there is a rising emphasis on creating point-of-care 
devices—portable biosensors that are simple to use and 
enable quick analyte detection across different environments, 
ranging from clinics to remote locations [10].

Several studies highlight advancements in biosensors for 
blood analysis. Li et al. demonstrated an extensive over-
view of electrochemical biosensors with specific focus on 
advancements in electrode materials and sensing techniques 
for hemoglobin detection [11]. Rasheed et al. on the other 
hand presented an optical biosensors, exploring diverse 
optical sensing mechanisms and their applicability in point-
of-care cases [10]. Ji et al. demonstrated an optical bio-
sensor using aptamers to detect hemoglobin, incorporating 
graphene oxide and gold nanoparticles [12]. Yazdanpanah 
et al. presented a review on advancements in electrochemi-
cal biosensors for hemoglobin detection, focusing on their 
suitability for biomedical applications [13]. Wu et al. intro-
duced an innovative electrochemical biosensor for highly 
sensitive detection of low-concentration proteins such as 
hemoglobin [14].

Metasurfaces are materials designed to manipulate and 
control electromagnetic waves at scales smaller than the 
wavelength [15, 16]. Unlike traditional optical components 
that depend on bulky lenses and mirrors, metasurface func-
tion by arranging nanostructures on a flat surface, allowing 
room for exceptional control over light propagation [17]. 
These surfaces consist of arrays of subwavelength ele-
ments—typically metallic or dielectric nanostructures—
organized in specific patterns [18, 19]. By modifying the 
size, shape, and orientation of these nanostructures, meta-
surfaces can precisely influence the phase, amplitude, and 
polarization of incoming light [20]. This capability enables a 
variety of transformative optical functions, such as focusing 
light into finely resolved spots, shaping wavefronts to create 
complex optical patterns, and directing light along uncon-
ventional paths [21]. Metasurfaces are employed in numer-
ous fields, including telecommunications, imaging, sensing, 
and quantum optics. They provide compact and versatile 
alternatives to traditional optical components, facilitating 
the miniaturization of devices and systems while improving 
their performance and functionality [22, 23].

Graphene consists of a single layer of carbon atoms 
arranged in a two-dimensional honeycomb lattice. It 
is renowned for its outstanding properties: exceptional 
electrical conductivity, mechanical strength, and thermal 
conductivity [24]. Since its discovery in 2004, graphene 
has sparked widespread interest across multiple fields [25]. 
One of graphene’s notable attributes is its high electrical 
conductivity, marked by impressive electron mobility, 
making it an outstanding conductor of electricity [26]. This 

feature is pivotal for advancing faster and more efficient 
electronic devices [27]. Despite its thin structure, graphene 
exhibits remarkable mechanical strength, boasting a tensile 
strength more than 100 times greater than steel [28]. This 
exceptional strength-to-weight ratio positions it as an ideal 
material for durable. Graphene also excels in thermal 
conductivity, effectively dissipating heat [29]. This property 
is particularly advantageous in applications requiring 
efficient thermal management, such as in electronics [30]. 
Furthermore, its flexibility allows for integration into 
various substrates, facilitating the development of bendable 
electronics and wearable technology [31].

In this study, we present a biosensor design employing 
graphene-Au-Ag metasurface for the quantitative detection 
of hemoglobin via terahertz (THz) spectroscopy. This inte-
grated approach leverages the unique electronic properties 
of graphene in conjunction with the localized surface plas-
mon resonance (LSPR) effects of Au and Ag nanostructures 
to enhance the sensitivity and specificity of hemoglobin 
detection in the THz regime. The manuscript is structured 
as follows: “Design and Modeling” exemplifies the biosen-
sor design parameters and the finite element method (FEM) 
simulation protocol implemented in COMSOL Multiphysics. 
“Results and Discussion” delineates the simulation results 
and subsequent analysis of hemoglobin detection employing 
the proposed biosensor. Finally, “Machine Learning Optimi-
zation with Decision Tree Regressor” presents the machine 
learning-based optimization of the sensor design, using deci-
sion tree algorithms to enhance its performance.

Design and Modeling

A highly sensitive optical sensor has been developed employ-
ing a graphene, silver, and gold based metasurfaces depos-
ited on a SiO2 substrate. The sensor’s architecture is elegantly 
simple yet effective, as depicted in Fig. 1a–c, which provides 
structural, top, and front views, respectively. At the heart of 
the design is a hierarchical resonator structure engineered to 
enhance electromagnetic field confinement and light-matter 
interactions. The sensor’s central element is an inner square 
resonator (ISR) with a precise side length of 1.2 μm, which can 
be fabricated with a tolerance of ±5 nm using electron-beam 
lithography. This ISR is surrounded by four rectangular reso-
nators, each measuring 4 μm (±10 nm) by 0.5 μm (±5 nm). 
These components are integrated into a larger square resona-
tor design measuring 8.5 μm (±20 nm) on each side. This 
multi-resonator configuration is designed to create multiple 
plasmonic hotspots, significantly enhancing the local electro-
magnetic field and improving the sensor's detection limit.

The substrate structure is characterized by a total length 
of 11 μm (±25 nm), with key features delineated by dimen-
sions of 1.7 μm (±10 nm) and 1.6 μm (±10 nm). The choice 
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of SiO2 as the substrate material is deliberate, selected for its 
low optical loss in the target wavelength range of 400–2000 
nm. This SiO2 layer is thermally grown on a silicon wafer 
to ensure optimal performance. The dimensions and tight 
tolerances specified in the design highlight the high level of 
control required in the fabrication process.

The fabrication of the high-sensitivity optical sensor begins 
with a silicon wafer, upon which a layer of SiO2 is grown. This 
substrate is selected for its low optical loss in the 400–2000 
nm wavelength range. Electron beam lithography (EBL) is 
then employed to pattern a graphene-gold metasurface onto 
the SiO2 surface. The design incorporates an inner square 
resonator with a precise side length of 1.2 μm ± 5 nm, sur-
rounded by four rectangular resonators, each measuring 4 μm 
(±10 nm) by 0.5 μm (±5 nm). These components are inte-
grated into a larger square resonator design measuring 8.5 
μm (±20 nm). Following the patterning process, graphene 
and gold layers are deposited onto the substrate using appro-
priate techniques to ensure uniform coverage and adherence 
to the SiO2 surface. After fabrication, the sensor undergoes 
rigorous characterization and testing. Scanning electron 
microscopy (SEM) is utilized to verify the dimensions and 
structural integrity of the fabricated resonators. Optical meas-
urements are conducted to evaluate the sensor’s performance 
in terms of electromagnetic field confinement and light-matter 
interactions. Throughout the process, adjustments are made 
to optimize fabrication parameters such as dimensions and 
deposition techniques, with the aim of achieving the desired 
sensitivity and detection limits.

Factors Determining Sensor Performance

Sensor performance evaluation is a complex process involv-
ing multiple interconnected parameters, each providing 
unique understanding into the sensor’s capabilities. At 
the core of this evaluation is sensitivity, which measures 
how responsive the sensor is to changes in the input. It is 
expressed as a change in frequency per unit change in refrac-
tive index, with higher sensitivity indicating the ability to 
detect smaller changes [32].

The figure of merit combines sensitivity with the sharpness 
of the sensor’s response, providing a comprehensive measure 
of overall performance. A higher figure of merit suggests bet-
ter performance, as it represents high sensitivity with a narrow 
response peak. This parameter is particularly useful when com-
paring sensors with different operational principles [33–35].

The quality factor, often referred to as Q factor, is a 
dimensionless parameter describing how underdamped a 
resonator is. It indicates the rate of energy loss relative to the 
stored energy of the resonator. In practical terms, a higher 
Q factor results in sharper resonance peaks and potentially 
higher sensitivity [36–39].

(1)S =
�f

�n

(2)FOM =
S

FWHM

Fig. 1   Schematic representation 
of a conceptual sensor employ-
ing a graphene metasurface. The 
illustration provides multiple 
perspectives: a top view, b 
three-dimensional view, c front 
view, and d cross-sectional view 
detailing the sensor’s mate-
rial composition and design 
elements
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Signal-to-noise ratio is crucial for determining the clar-
ity of the sensor’s output. It indicates how easily the sensor 
can distinguish the actual signal from background noise, 
which is particularly important in environments with high 
electromagnetic interference or when detecting very small 
changes [40–43].

Dynamic range indicates the span of input values over 
which the sensor can operate effectively. A larger dynamic 
range means the sensor can measure a wider span of input 
values accurately, which is important in applications where 
the input can vary greatly, such as in environmental moni-
toring [44–47].

Detection accuracy is inversely related to the width of the 
senso’s response peak. Higher accuracy suggests that the 
sensor can precisely pinpoint the exact value of the input, 
which is crucial in applications requiring high precision 
measurements [48–51].

The detection limit represents the smallest change in 
input that can be detected by the sensor. A lower detection 
limit is generally better, indicating the sensor can detect very 
small changes in the measured quantity.

Sensor resolution combines sensitivity with the detection 
limit, giving an overall measure of the sensor’s ability to 
distinguish small changes in the input. A higher resolution 
indicates better performance in detecting minute variations.

The uncertainty coefficient relates to the error in the sen-
sor's measurements. It takes into account the magnitude of 
the frequency change and the width of the response peak. 
A lower uncertainty coefficient indicates more reliable 
measurements.
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These parameters are interconnected and often involve 
trade-offs. For instance, increasing sensitivity come at the cost 
of a reduced dynamic range, or improving the detection limit 
require sacrificing some aspect of the signal-to-noise ratio. A 
very high Q factor result in a sensor that is slower to respond 
to changes. In practice, the relative importance of these 
parameters depends on the specific application of the sensor. 
Environmental monitoring prioritizes a wide dynamic range, 
while medical diagnostics require a low detection limit. Real-
time control systems emphasize a high signal-to-noise ratio 
and fast response. Understanding these parameters and their 
relationships allows engineers and researchers to optimize 
sensor designs for specific applications, balancing various 
performance aspects to achieve the best overall functionality 
for the intended use. This comprehensive approach to sensor 
evaluation ensures that the resulting devices are well-suited to 
their target applications, whether in biosensing, environmental 
monitoring, chemical detection, or other fields requiring pre-
cise and reliable measurements.

The relationship between reflectance, angle of incidence, 
graphene potential, and conductivity is defined by Eqs. 10–15 
[52]
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Table 1   Refractive indices of various hemoglobin compounds

RIs n1 n2 n3 n4

Value (RIU) 3.4 3.6 3.9 4.3
Concentration 10 20 30 40
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(a)

(b)

Frequency(THz)

Fig. 2   The influence of GCP variations on the sensor’s transmission 
response

Fig. 3   Transmittance response as a function of varying incidence 
angles, illustrated through line and color plots

Fig. 4   The impact of varying the width of rectangular resonators on 
the transmittance response, depicted through line and color plots

Fig. 5   The impact of varying the height of rectangular resonators on 
the transmittance response
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Fig. 6   The impact of varying the inner square resonator on the trans-
mittance response

Fig. 7   The impact of varying the outer square resonator on the trans-
mittance response, depicted through line and color plots

(a)

(b)

Fig. 8   The variation in transmittance response corresponding to 
changes in the refractive index of hemoglobin, resulting from altera-
tions in concentration

F = -0.2935n + 1.0463

R2 = 0.9123

(a)

(b)

R2 = 0.96988

F = -0.0009n + 0.6650

Fig. 9   depicts the curve fitting for the correlation between resonance 
frequency and refractive index (n) (a), as well as concentration (b)
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The impedance and transmittance of the proposed sensor 
are defined by [53]
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Fig. 10   Depicts how the electric 
field intensity (EFI) is distrib-
uted across various terahertz 
frequencies for the proposed 
design
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Fig. 11   Binary encoding capabilities of the sensor design
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Equation 21 is used to determine the transmittance.
In graphene, the Kubo formula provides a quantitative 

relationship that connects the electrical conductivity (σ) to 
both the characteristics of the electronic band structure and 
the various scattering mechanisms that electrons encounter 
within the material. This relationship is expressed through 
rigorous mathematical equations, which demonstrates how 
the conductivity depends on factors such as the density of 
states, carrier velocities, and the nature of scattering events 
like impurities, defects, or phonons. These elements col-
lectively define the material's ability to conduct electricity. 
Some of these equations includes [41]

(19)� =
n

z

(20)� = nz

(21)A(w) = 1 − R(w) − T(w) = 1 − ||s11||
2
− ||s21||

2

(22)� (�) = 1 +
�s

�0�∇

The refractive index of silicon dioxide is given by [54]

The Drude model [37] is used to explain the relative per-
mittivity of gold.

Hemoglobin, a tetrameric metalloprotein crucial for oxy-
gen transport in erythrocytes, serves as a key biomarker in 
various medical diagnostics. While spectrophotometric and 
colorimetric assays remain prevalent, refractive index (RI)-
based techniques offer an alternative approach with distinct 
advantages in hemoglobin quantification [55]. The refrac-
tive index, defined as the ratio of the speed of light in vacuo 
to its velocity in a given medium, provides a measure of a 
substance’s optical density. In hemoglobin detection, vari-
ations in RI correlate with changes in the protein’s concen-
tration, allowing for quantitative analysis. The methodology 
for RI-based hemoglobin detection involves several steps. 
Initially, sample preparation requires isolation or dilution of 
hemoglobin in an appropriate buffer solution. Subsequently, 
RI measurement is conducted using refractometers or simi-
lar optical instruments to determine the sample’s refractive 
index. Calibration follows, involving the generation of a 
standard curve using solutions of known hemoglobin con-
centrations. Finally, quantification is achieved through inter-
polation of unknown sample concentrations based on the 
calibration curve. This technique offers several advantages, 
including non-destructive analysis, high sensitivity to minor 
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Table 2   The performance metrics of the proposed sensor design

f (THz) 0.66 0.64 0.635 0.63
n (RIU) 1.34 1.36 1.39 1.43
df (THz) 0.02 0.005 0.005
dn (RIU) 0.02 0.03 0.04
S (GHzRIU−1) 1000 167 125
FWHM (THz) 0.304 0.304 0.304 0.304
FOM (RIU−1) 3.289 0.548 0.411
Q 2.171 2.105 2.089
DL 0.400 3.396 4.527
DR 1.197 1.161 1.152 1.143
SNR 0.066 0.016 0.016
SR 0.400 0.566 0.566
DA 3.289 3.289 3.289 3.289
X 0.009 0.003 0.003

Table 3   Comparative analysis 
of the proposed sensor with 
other similar cases

Sensing structure S FOM (RIU−1) DL (RIU) Q Application

Ref [57] 130 GHz/RIU 4.37 – 179.95 Hemoglobin detection
Ref [58] 7.75,103 nm/RIU – – – THz sensing
Ref [45] 443 GHz/RIU 2.368 0.063 7.684 Explosive detection
Ref [57] 130 GHz/RIU 4.37 – 179.95 Detection of hemoglobin
Ref [47] 153.85 GHz/RIU 3.98 0.041 8.54 Detection of brain tumor
Ref [59] 107.9 GHz/RIU 3.15 0.45 11.22 Cu2+ detection
Proposed sensor 1000 GHz/RIU 3.289 0.400 2.171 Detection of hemoglobin
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concentration changes, and rapid turnaround times. However, 
it also presents challenges, such as potential interference from 
other solutes and the need for sophisticated data interpretation 
algorithms. The RI method’s efficacy is influenced by fac-
tors including temperature, wavelength of incident light, and 
sample purity. Careful control of these variables is essential 
for accurate and reproducible results. Despite its limitations, 
RI-based hemoglobin detection holds significant potential in 
clinical diagnostics, biomedical research, and point-of-care 
testing Table 1.

Results and Discussion

In the simulation of the designs illustrated in Fig. 1 using 
COMSOL Multiphysics, planar electromagnetic wave propa-
gation along the z-axis is employed to generate a frequency 
spectrum ranging from 0.1 to 1 THz. The computational model 
incorporates high-resolution tetrahedral meshing techniques 
to accurately represent the complex geometries and material 
interactions inherent in the system. Figures 2, 3, 4, 5, 6, 7, 
8, 9, 10, and 11 present comprehensive transmittance spectra 

Fig. 12   Scatter plots for GCP variation
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that demonstrates the effects of various structural parameters. 
These parameters include variation of graphene chemical 
potential (μc), resonator dimensions, and electric field strength 
(E) distributions. The resultant spectra not only validate the 
achieved transmittance levels but also provide critical insights 
into the structure-function relationships governing the sensor’s 
performance.

The initial investigation examined the impact of vary-
ing graphene chemical potential (GCP) on the transmittance 
response of the sensor. GCP was systematically varied from 
0.1 to 0.9 eV in 0.1 eV increments. Figure 2a, b illustrates 
the results through line and color plots, respectively. Fig-
ure 2a demonstrates an inverse relationship between trans-
mittance and GCP. Notably, at GCP values of 0.1 eV and 0.2 
eV, no clear transmittance reduction was observed within the 
analyzed frequency range, indicating near-perfect transmit-
tance. As GCP increased from 0.5 to 0.9 eV, the observed 
transmittance drops are 50.89%, 41.97%, 34.77%, 29.03%, 
and 24.46%, respectively, across 0.35–1 THz. This phenom-
enon is primarily attributed to enhanced graphene conduc-
tivity at higher GCP values, resulting in stronger interac-
tions with incident electromagnetic waves and consequently 

greater transmittance modulation. Figure 2b presents a color 
plot demonstrating a rightward shift in transmittance across 
the selected frequency range as a function of increasing 
GCP. This visualization highlights the inverse relationship 
between GCP and transmittance observed in the line plot.

To optimize the structural design, we conducted a parametric 
study focusing on the angle of incidence and other resonator 
parameters. We systematically varied the angle of incidence 
(θ) from 0 to 80° in 10° increments, analyzing its effect on 
transmittance as depicted in Fig. 3a, b. The observed transmit-
tance values were 65.11%, 64.77%, 63.72%, 61.86%, 58.98%, 
54.72%, 48.50%, 39.16%, and 24.46%, corresponding to θ = 0°, 
10°, 20°, 30°, 40°, 50°, 60°, 70°, and 80°, respectively.

The color plot in Fig. 3 illustrates an inverse relation-
ship between the angle of incidence and both transmittance 
and transmission bandwidth. As θ increases, we observe a 
marked decrease in transmittance and a concomitant widen-
ing of the transmission band. This phenomenon suggests 
that the sensor’s angular response becomes more selec-
tive at higher angles of incidence, this inverse relation-
ship can be attributed to the increased optical path length 
and enhanced reflectivity at the interface as the angle of 

Fig. 13   Heat map plots for GCP variation
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incidence increases, consistent with Fresnel’s equations and 
the principles of thin-film interference.

The color plot in Fig. 3 clearly demonstrates that as the 
angle of incidence increases, both the transmittance and 
the width of the transmission band also increase. This indi-
cates that the sensor’s response to incident angles broadens, 
enhancing its sensitivity and operational range.

In the third phase of parameter optimization, we con-
ducted a systematic variation of the rectangular resonator 

width. This dimensional modification spanned from 1 to 4 
μm, with incremental steps of 0.5 μm. The purpose of this 
parametric adjustment was to investigate its impact on trans-
mittance across a broad spectral range of 0.1 to 1 THz. The 
outcomes of this width variation are presented in Fig. 4a, b 
of the simulation results.

The observed transmittance attenuations were quanti-
fied as follows: 12.46%, 13.17%, 14.10%, 15.53%, 18.43%, 
34.44%, and 36.38%. These attenuation percentages 

Fig. 14    Scatter plots for incident angle variation
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correlate with specific resonator widths within the aforemen-
tioned dimensional range. Of particular note, as illustrated in 
Fig. 4b, the Fermi plot demonstrates a pronounced leftward 
shift in the transmittance response curve as a function of 
increasing rectangular resonator width. This spectral shift 
indicates an inverse relationship between resonator width 
and resonant frequency, with larger widths corresponding 
to lower frequency values.

In the fourth phase of parameter optimization, we sys-
tematically varied the height (h) of a rectangular resonator 
from 0.2 to 1.0 μm in increments of 0.2 μm. This investiga-
tion aimed to quantify the effect on transmittance across 
the frequency range of 0.1–0.3 THz. Figure 5a, b illustrates 
the results of these parametric variations. Significant trans-
mittance reductions were observed, with values of 56.34%, 
50.49%, 48.61%, 50.01%, and 53.31% corresponding to 
the respective resonator heights. Figure 5b presents these 

findings in a Fermi plot, demonstrating an inverse relation-
ship between resonance frequency and resonator height. The 
data indicate a clear shift towards lower frequencies as h 
increases,

In the fifth phase of parameter optimization, we system-
atically varied the dimensions of the inner square resonator 
from 1.2 to 2.0 μm in 0.2-μm increments. This paramet-
ric study aimed to investigate the impact on transmittance 
characteristics across a frequency spectrum of 0.5–1.5 
THz. Figure 6a, b illustrates the results of this parametric 
analysis, demonstrating significant reductions in transmit-
tance percentages of 15.95%, 18.07%, 20.07%, 22.06%, and 
24.46% across the 0.5–1.5-THz frequency range. Further-
more, Fig. 5b presents a complementary Fermi plot, visually 
depicting the inverse relationship between the height of the 
rectangular resonators and the resonant frequency during 
the simulation process.

Fig. 15   Heat map plots for incident angle variation
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In the final phase of parameter optimization, we system-
atically varied the dimensions of the outer square resonator 
from 6.5 to 9 μm in 0.5-μm increments. This modification 
was implemented to investigate the impact on transmittance 
across the frequency range of 0.5 to 1 THz. Figure 7a, b 
illustrates the resultant effects of these alterations, dem-
onstrating transmittance reductions of 27.72%, 24.46%, 
22.01%, 19.64%, 17.85%, and 16.59% at distinct frequen-
cies within the specified range. Figure 5b presents a Fermi 
plot depicting the correlation between resonator size and 

transmittance. The plot indicates that as the outer square 
resonator dimensions increase from 6.5 to 9 μm, there is 
a corresponding expansion of the transmittance band, sug-
gesting an enhanced range of frequencies at which efficient 
transmission through the resonator occurs

Following the successful optimization of the metasur-
face-based terahertz refractive index sensor structure, we 
proceeded to evaluate its efficacy in detecting hemoglobin 
concentrations. The established correlation between hemo-
globin concentration and refractive index, as documented 

Fig. 16   Scatter plots for width of rectangular variation
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by [56]. To rigorously examine the sensor’s performance, 
we conducted a series of simulations employing hemo-
globin samples with concentrations ranging from 10 to 
40 g/L. The concentration was incrementally increased by 
10 g/L, yielding four discrete test points: 10 g/L, 20 g/L, 
30 g/L, and 40 g/L. These concentrations correspond to 
refractive indices of 1.34, 1.36, 1.39, and 1.43, respec-
tively, as determined by prior calibration. The relation-
ship between hemoglobin concentration and transmittance 
response is fundamental to characterizing the sensor’s per-
formance. We have systematically demonstrated this rela-
tionship in Fig. 8, which illustrates the transmittance char-
acteristics of the sensor design. Analysis of these results 
are used to evaluate key performance metrics, including 
the sensor’s linearity, sensitivity, and overall efficacy in 
differentiating between varying hemoglobin concentra-
tions within the clinically relevant range. This assessment 
provides crucial insights into the sensor’s potential for 
practical implementation in hematological diagnostics 
and research.

Figure 8 in the study presents quantitative data illus-
trating the relationship between hemoglobin concentra-
tion and transmittance. The results demonstrate that as 

hemoglobin concentration increases, there is a correspond-
ing decrease in transmittance, with each concentration 
level exhibiting a characteristic frequency at which the 
transmittance minimum is most pronounced.

For the sample with the lowest hemoglobin concentra-
tion, the maximum transmittance reduction of 10.72% was 
observed at 0.66 THz. As the concentration increased to 
the subsequent level, the peak reduction shifted to 10.65% 
at 0.64 THz. The third concentration level exhibited a 
10.54% transmittance reduction at 0.635 THz. At the high-
est hemoglobin concentration tested, the sensor recorded a 
10.41% transmittance reduction at 0.63 THz. This pattern 
demonstrates a consistent shift in the frequency of maxi-
mum transmittance reduction as a function of hemoglobin 
concentration. The subtle variations in both the transmit-
tance reduction percentages and the corresponding fre-
quencies provide critical data for sensor calibration and 
the determination of its sensitivity to incremental changes 
in hemoglobin concentration.

Furthermore, a comprehensive analysis was conducted 
to examine the correlation between resonance frequency 
with RIs and concentration. The results of this analysis are 
visually presented in Fig. 9a, b, respectively. The findings 

Fig. 17   Heat map plots for rectangular width variation
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demonstrate a strong positive correlation between these 
parameters.

The relationship between the refractive index (n) and 
the resonance frequency (F) is mathematically expressed 
through two linear equations:

The negative slopes in both equations (−0.2935 and 
−0.0009) indicate an inverse relationship between the vari-
ables. This means that as the refractive index increases. 
The high correlation coefficients (R2 scores) of 0.9123 
and 0.96988 were observed for these relationships. These 
R2 values, being close to 1, indicate that the linear models 
provide an excellent fit to the experimental data, explain-
ing 91.23% and 96.988% of the variance in the resonance 
frequency based on the refractive indices as well as con-
centration respectively. The difference in the magnitude of 
the slopes between Eqs. 28 and 29 is clearly demonstrated.

The electric field distribution results for the proposed sen-
sor design are presented in Fig. 10a–f, illustrating the sensor’s 

(28)F = −0.2935n + 1.0463

(29)F = −0.0009n + 0.6650

electromagnetic response at three critical frequencies: 0.4 
THz, 0.65 THz, and 1 THz. At 0.65 THz, a notable anomaly 
is observed, characterized by a significant enhancement in 
absorption and a corresponding decrease in transmittance. 
This phenomenon is evident in Fig. 10c, d, where high-inten-
sity electric field concentrations are visualized, indicative of 
increased electromagnetic energy absorption at this specific 
frequency. Conversely, the sensor’s response at 0.4 THz and 
1 THz demonstrates markedly different characteristics. As 
illustrated in Fig. 10a, b, e, f, these frequencies exhibit sub-
stantially lower electric field intensities. This distinct behavior 
suggests that at these frequencies, the sensor structure facili-
tates enhanced electromagnetic wave propagation, resulting in 
reduced absorption and consequently elevated transmittance 
levels. These observations highlight the frequency-dependent 
nature of the sensor’s electromagnetic properties.

Table 2 provides a comprehensive analysis of the sen-
sor’s performance metrics across a range of frequencies 
(0.63–0.66 THz) and refractive indices (1.34–1.43 RIU) of 
blood components. The evaluated parameters include sen-
sitivity and full width at half maximum (FWHM) among 
others. The sensor exhibits sensitivity values ranging from 

Fig. 18   Scatter plots for height of rectangular variation
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125 to 1000 GHzRIU-1, demonstrating variable respon-
siveness to refractive index changes. The FWHM remains 
constant at 0.304 THz across the frequency spectrum, 
indicating a consistent spectral response. The FOM, cal-
culated as the ratio of sensitivity to FWHM, spans from 
0.411 to 3.289 RIU-1. Q factors, ranging from 2.089 to 
2.171, characterize the resonance peaks’ sharpness and 
efficiency. Detection limits vary between 0.400 and 4.527 
RIU, representing the minimum detectable refractive index 
change. The dynamic range, approximately 1.143 to 1.197, 
defines the span of measurable refractive indices. Sensor 
resolution values of 0.400 and 0.566 indicate the smallest 
discernible refractive index change. SNRs of 0.066 and 
0.016 quantify the signal strength relative to background 
noise. Uncertainty values of 0.009 and 0.003 represent 
measurement variability, while the consistent detection 
accuracy of 3.289 underscores the sensor’s precision in 
detecting refractive index changes.

We conducted a comparative analysis of the proposed 
sensor design with other cases. The evaluation focused on 
key performance metrics including operational range, sensi-
tivity, and potential applications. A comprehensive overview 
of this comparison is presented in Table 3. The assessment 

showcases that the proposed sensor design demonstrates 
exceptional performance across all various parameters.

Figure 11a–d illustrates the encoding outcomes of the 
sensor design, demonstrating its application to binary 
encoding tasks through the adjustment of two chemical 
potentials, μc1 and μc2. The results demonstrate distinct 
patterns of transmittance based on different combinations 
of these chemical potentials. When both μc1 and μc2 are 
set to 0.1 eV, as shown in Fig. 11a, the sensor exhib-
its minimum transmittance drops. A similar outcome is 
observed in Fig. 11b, where μc1 is maintained at 0.1 eV 
while μc2 is increased to 0.9 eV. These configurations 
result in states of low transmittance, which can be inter-
preted as one set of binary values in the encoding scheme. 
In contrast, Fig. 11c, d depicts scenarios where close to 
perfect transmittance is achieved. This occurs when both 
μc1 and μc2 are set to 0.9 eV, as well as when μc1 is 0.9 
eV and μc2 is 0.1 eV. These high transmittance states rep-
resent the opposite binary values in the encoding system. 
The clear distinction between low and high transmittance 
states, achieved through various combinations of chemi-
cal potentials, demonstrates the sensor’s capability for 
2-bit encoding. By manipulating μc1 and μc2, the sensor 

Fig. 19   Heat map plots for rectangular height variation
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can effectively switch between these states, offering a 
new approach to information encoding in sensor applica-
tions. This feature highlights the versatility and potential 
of the proposed sensor design in binary encoding tasks.

Machine Learning Optimization 
with Decision Tree Regressor

Decision tree regressor is a popular machine learning model 
used for both classification and regression tasks [60]. It is 
a tree-like structure that makes decisions based on asking a 
series of questions about the input features [61]. Decision trees 
consist of nodes, branches, and leaves. The topmost node is 
called the root node, internal nodes represent decision points, 
branches represent the possible answers to these decisions, and 
leaf nodes represent the final outcomes or predictions [62]. The 
tree makes decisions by traversing from the root node to a leaf 
node, following the appropriate branches based on the input 
features. At each internal node, a question is asked about a spe-
cific feature, and the path is chosen based on the answer. The 
training process of a decision tree involves recursively splitting 
the data based on the most informative features. The goal is to 

create pure or homogeneous subsets of data at each leaf node 
[63]. Common splitting criteria include Gini impurity, informa-
tion gain, and variance reduction. The tree grows by selecting 
the best feature and split point at each node that maximizes 
the chosen splitting criterion. This process continues until a 
stopping condition is met, such as reaching a maximum depth 
or having a minimum number of samples in a leaf node [64]. 
Decision trees offer several advantages. Firstly, they are highly 
interpretable and visually intuitive, making them ideal for con-
veying decisions to non-technical audiences. Secondly, they 
can handle both numerical and categorical data effectively, 
minimizing the need for extensive data preprocessing. Thirdly, 
decision trees are non-parametric, meaning they can capture 
complex, non-linear relationships in the data without making 
assumptions about the underlying data distribution. Lastly, 
decision trees provide a straightforward way to assess feature 
importance, aiding in feature selection and understanding the 
key predictors influencing outcomes. Despite their advantages, 
decision trees also have several limitations. Firstly, they are 
susceptible to overfitting, particularly when they are allowed 
to grow excessively deep, which can result in poor performance 
when applied to new, unseen data. Secondly, decision trees can 
exhibit instability, meaning small variations in the training data 

Fig. 20   Scatter plots for inner square resonator variation
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could lead to significantly different tree structures, impacting 
the model's reliability. Thirdly, in datasets where classes are 
imbalanced, decision trees may show a bias towards the domi-
nant class, potentially leading to less accurate predictions for 
minority classes. Important hyperparameters for decision trees 
include maximum depth, minimum samples per leaf, minimum 
samples for split, and maximum number of features. These 
parameters can be tuned using techniques like cross-validation 
to optimize model performance.

Mathematical Equations for the Model Analysis

Mean Squared Error (MSE)

Mean squared error is used for evaluating splits and measuring 
the quality of predictions:

where n is the number of samples, yi is the actual value, and 
ŷi is the predicted value.

(30)MSE =
(
1

n

)
× Σ

(
yi − ŷi

)2

Mean Absolute Error (MAE)

Mean absolute error is an alternative to MSE, less sensitive 
to outliers:

Variance reduction is used to evaluate the quality of a split:

where A is the variance reduction, U is the variance of 
the parent node, K and P are the number of samples in left 
and right child nodes, N is the total number of samples in the 
parent node, and W and B are the variances of the left and 
right child nodes.

Leaf Node Prediction

The prediction at a leaf node is typically the mean of the target 
values in that node:

(31)MAE =
(
1

n

)
× Σ||yi − ŷi

||

(32)A = U −
K

N
×W −

P

N
× B

Fig. 21   Heat map plots for inner square resonator variation
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Pruning Cost Function

Pruning cost function is used in post-pruning to balance 
complexity and accuracy:

where T is the tree, |T| is the number of leaf nodes, and α 
is the complexity parameter.

R‑Squared (Coefficient of Determination)

R-squared is used to evaluate the overall performance of the 
regressor:

(33)ŷ =
1

q
× Σyi

(34)ŷ =
1

q
× Σyi

(35)Cost(T) = Σ(leaf nodes)[MSE(leaf)] + �|T|

where SSR is the sum of squared residuals, SST is the 
total sum of squares, and ȳ is the mean of observed values.

In these experiments, the frequency of simulation is 
treated as the dependent variable, and a decision tree 
regressor is essentially chosen for its ability to predict 
absorption values accurately. The performance of the 
prediction models is evaluated using the R2 score, which 
measures how well the predicted values align with the 
actual observations.

The performance of the models, trained using various 
combinations of graphene potential and polynomial degree 
parameters, is represented in Fig. 12a–i through scatter plots 
and in Fig. 13a–d via heat maps. These graphical representa-
tions demonstrate the influence of diverse input configurations 
on the models’ overall efficacy. Analysis of the scatter plots 
depicts that an optimal coefficient of determination (R2) of 1 
is achieved for test case (TC) values ranging from 0.1 to 0.3 
across all graphene potential combinations (GCP) examined.

(36)R2 = 1 − (SSR∕SST)

Fig. 22   Scatter plots for outer square resonator variation
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The heat maps demonstrate a correlation between increas-
ing polynomial degree and R2 scores. For TC values of 0.1 
and 0.2, the R2 scores span from 0.89 to 1, whereas for TC 
values of 0.3 and 0.4, the R2 scores range from 0.9 to 1. 
This trend suggests that higher polynomial degrees generally 
yield improved model performance, particularly for larger 
TC values.

The effectiveness of the models, which were trained using 
different combinations of incidence angles and polynomial 
degree parameters, is illustrated in two ways: through scatter 
plots in Fig. 14a–i and heat maps in Fig. 15a–d. These repre-
sentations showcase how various input configurations affect 
the models’ overall performance. Examination of the scatter 
plots exemplifies that the models achieve a perfect coefficient 
of determination (R2) of 1 for test case (TC) values between 
0.15 and 0.45, consistent across all cases studied. The heat 
maps demonstrate a trend where higher polynomial degrees 
correspond to improved R2 scores. For TC values ranging from 
0.1 to 0.4, the R2 scores fall between 0.90 and 1.

The models’ performance, trained on varying combinations 
of rectangular widths and polynomial degree parameters, is 
rigorously evaluated using scatter plots depicted in Fig. 16a–g 
and heat maps in Fig. 17a–d. These graphical analyses provide 

illustration into the influence of different input configurations 
on the models’ predictive accuracy. The scatter plots consist-
ently demonstrate an optimal coefficient of determination (R2) 
of 1 for test case (TC) values within the range of 0.25 to 0.35 
across all cases investigated. The heat maps further showcase a 
positive correlation between increased polynomial degrees and 
enhanced R2 values. Particularly, for TC values between 0.1 and 
0.3, the R2 values range from 0.91 to 1, while for TC = 0.4, the 
R2 values are observed to fall between 0.94 and 1.

The performance of the models, trained on various 
combinations of rectangular heights and polynomial 
degree parameters, is thoroughly assessed using scatter 
plots shown in Fig. 18a–e and heat maps in Fig. 19a–d. 
These representations highlight the impact of different 
input configurations on the models’ predictive accuracy. 
The scatter plots consistently showcase an optimal coef-
ficient of determination (R2) of 1 for test case (TC) values 
ranging from 0.15 to 0.45 across all scenarios studied. The 
heat maps further illustrate a positive correlation between 
higher polynomial degrees and improved R2 values. Essen-
tially, for TC values between 0.1 and 0.2, R2 values range 
from 0.92 to 1, while for TC = 0.3 and 0.4, R2 values are 
observed between 0.93 and 1.

Fig. 23   Heat map plots for outer square resonator variation
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The performance of the models, trained on diverse com-
binations of inner square resonator dimensions and polyno-
mial degree parameters, is systematically evaluated using 
scatter plots (Fig. 20a–e) and heat maps (Fig. 21a–d). These 
graphical representations depict the influence of varying 
input configurations on the models’ predictive accuracy. The 
scatter plots consistently demonstrate an optimal coefficient 
of determination (R2) of 1 for test case (TC) values ranging 
from 0.35 to 0.45 across all examined scenarios. Moreover, 
the heat maps demonstrate a positive correlation between 
increased polynomial degrees and enhanced R2 values. Nota-
bly, for TC values of 0.1, 0.2, and 0.4, the R2 values span from 
0.92 to 1, while for TC = 0.3, the R2 values are observed 
within the range of 0.90 to 1.

The models’ performance, trained on diverse combina-
tions of outer square resonator dimensions and polynomial 
degree parameters, is rigorously evaluated through scat-
ter plots (Fig. 22a–f) and heat maps (Fig. 23a–d). These 
graphical analyses exemplify the effects of varying input 
configurations on the models' predictive accuracy. The scat-
ter plots consistently demonstrate an optimal coefficient of 

determination (R2) of 1 for test case (TC) values in the range 
of 0.25 to 0.55 across all scenarios studied. Furthermore, 
the heat maps exhibit a clear positive correlation between 
increasing polynomial degrees and enhanced R2 values. 
Notably, for TC values of 0.1, 0.2, 0.3, and 0.4, the R2 val-
ues are observed to span from 0.92 to 1, indicating high 
predictive accuracy.

The effectiveness of the models, which were trained using 
various combinations of refractive indices and polynomial 
degree settings, is thoroughly assessed using visual represen-
tations. Scatter plots (shown in Fig. 24a–d) and heat maps 
(illustrated in Fig. 25a–d) are employed to demonstrate how 
different input configurations impact the models' predictive 
accuracy. Across all examined cases, the scatter plots consist-
ently show an ideal coefficient of determination (R2) of 1 for 
test case (TC) values ranging from 0.5 to 0.15. The heat maps 
depicts that as polynomial degrees increase, so do the R2 val-
ues, indicating improved accuracy. For TC values of 0.1, 0.2, 
0.3, and 0.4, the models achieve high predictive accuracy, with 
R2 values ranging from 0.95 to 1. This suggests strong perfor-
mance across various test conditions.

Fig. 24   Scatter plots for the variation of RIs for detection analysis
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Conclusion

In summary, this study has presented a terahertz-based 
biosensor for hemoglobin detection. The optimized sen-
sor structure, featuring a hierarchical resonator arrange-
ment, demonstrates remarkable sensitivity of up to 1000 
GHzRIU−1 and a figure of merit of 3.289 RIU−1. The 
sensor's ability to detect hemoglobin concentrations 
ranging from 10 to 40 g/L with high accuracy showcases 
its potential for real-world medical diagnostic applica-
tions, particularly in point-of-care settings where rapid 
and precise hemoglobin quantification is crucial. The 
analysis of electric field distributions demonstrates a 
frequency-dependent absorption behavior, with peak 
absorption observed at 0.65 THz. Furthermore, the 
implementation of machine learning optimization using 
a decision tree regressor exemplifies perfect prediction 
accuracy across various parameter combinations. This 
successful integration of artificial intelligence tech-
niques with biosensor design represents a significant 
step towards developing more intelligent and adaptive 
sensing systems. While the results are highly promising, 
future work should focus on experimental validation of 

the simulated performance, investigation of the sensor’s 
behavior with complex biological samples, and explo-
ration of its potential in detecting other biomolecules. 
Additionally, further research into miniaturization and 
integration with existing medical devices could accel-
erate the sensor’s transition from laboratory concept to 
practical application.
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