
Vol.:(0123456789)

Plasmonics (2025) 20:3161–3184 
https://doi.org/10.1007/s11468-024-02489-w

RESEARCH

Nanoengineered Graphene Metasurface Surface Plasmon Resonance 
Sensor for Precise Hemoglobin Detection with AI‑Assisted 
Performance Prediction

Jacob Wekalao1 · Ngaira Mandela2 · Obed Apochi3 · Costable Lefu4 · Tobias Topisia5

Received: 30 June 2024 / Accepted: 11 August 2024 / Published online: 13 September 2024 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
The development of highly sensitive and reliable biosensors for hemoglobin detection is crucial for various medical and 
diagnostic applications. Hemoglobin, a vital protein in red blood cells responsible for oxygen transport, serves as an important 
biomarker for numerous health conditions. Accurate and rapid measurement of hemoglobin levels can aid in the early 
detection and monitoring of anemia, blood disorders, and other medical conditions. This study presents a biosensor design 
for hemoglobin detection, integrating a graphene-based metasurface with circular and square ring resonators constructed from 
silver and gold nanostructures. The proposed sensor leverages the unique plasmonic properties of plasmonic nanostructures 
and the remarkable optical characteristics of graphene to enhance its performance. Extensive parametric analysis and 
optimization are conducted to enhance detection accuracy among other performance parameters. Detection analysis 
demonstrated the sensor’s ability to resolve changes in hemoglobin concentration through distinct shifts in transmittance 
and reflectance spectra. The resulting sensor exhibits enhanced sensitivity of 3500nmRIU−1 to infrared energy, maximum 
FOM of 17.6, and detection limits of 0.05 among other performance parameters. Furthermore, machine learning optimization 
using 1D convolutional neural network regression is employed to predict the sensor’s behavior achieving high accuracy 
with maximum R2 scores ranging up to 1. The sensor design exhibits remarkable potential for applications requiring highly 
sensitive and precise hemoglobin monitoring in medical diagnostics and healthcare.
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Introduction

Hemoglobin is an essential protein in red blood cells that 
facilitates oxygen transport throughout the body [1]. Precise 
detection of hemoglobin is vital for diagnosing and tracking 
numerous health conditions, such as anemia, hemoglobi-
nopathies, and cardiovascular diseases [2]. The development 
of sensitive and selective hemoglobin sensors poses a major 
challenge in healthcare applications [3]. Traditional methods 
frequently involve complex procedures, lack specificity, or 
have limited sensitivity, which impedes timely and accurate 
diagnosis [4, 5].

Biosensors are devices that integrate a biological ele-
ment with a physicochemical detector to identify, cap-
ture, and convey data related to biochemical processes 
[6]. These devices have transformed various areas such 
as medicine, environmental monitoring, food security, 
and biodefense, by offering swift, precise, and economi-
cal identification and assessment of biological molecules, 
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cells, and microorganisms [7–9]. The biological compo-
nents of biosensors can be an enzyme, antibody, nucleic 
acid, cell, or tissue, selected for its specificity and affinity 
towards the target analyte [10]. This component interacts 
with the analyte, triggering a biochemical reaction that 
produces a measurable signal [11]. The physicochemical 
detector component, such as an electrochemical, optical, 
or mass-based transducer, then converts this signal into 
an electrical or optical output that can be quantified and 
analyzed [12].

Optical sensors are pivotal in modern technology across 
various fields, harnessing the principles of light to operate 
[13]. These sensors use different forms of light like visible, 
infrared, ultraviolet, or even laser beams to collect data about 
specific targets [14]. Optical sensors function by using the 
interaction between light and matter. They can detect varia-
tions in light intensity, wavelength, polarization, and phase, 
converting these changes into measurable electrical signals 
[15]. The essential components generally consist of a light 
source, such as an LED or laser, and a photodetector that 
transforms light into an electrical signal [16].

Graphene, gold, and silver nanostructures have unique 
optical and plasmonic properties, which are critical for vari-
ous applications. Graphene has high transparency and signif-
icant light absorption across the UV–visible-NIR spectrum 
[17]. It also supports surface plasmon resonances, which 
can be tuned via doping or electrostatic gating, making it 
highly useful in sensors and optoelectronic devices [18, 19]. 
Graphene and its derivatives are known for their significant 
fluorescence quenching properties, where fluorescent mol-
ecules or quantum dots near graphene undergo efficient non-
radiative energy transfer, thus reducing fluorescence [20].

Gold nanoparticles (AuNPs) exhibit localized surface 
plasmon resonance (LSPR), which enhances light absorption 
and scattering at specific wavelengths due to the collective 
oscillation of conduction electrons [21]. These properties 
render AuNPs ideal for applications in biological sensing, 
imaging techniques such as surface-enhanced Raman scat-
tering (SERS), and photothermal therapy [22]. Similarly, 
silver nanoparticles (AgNPs) show strong LSPR within 
the visible spectrum, which can be precisely adjusted by 
altering the nanoparticle size and shape [23]. With a higher 
extinction coefficient than gold, AgNPs effectively enhance 
local electromagnetic fields and amplify signals in sensing 
applications [24].

Surface-enhanced Raman scattering (SERS) employs 
plasmonic properties of nanostructures to amplify the 
Raman scattering signal of molecules adsorbed on their 
surfaces [25]. This technique provides high sensitivity and 
selectivity, making it essential in biosensing by enabling the 
detection of trace biomolecules, such as proteins and DNA, 
and allowing for the multiplexed detection of multiple ana-
lytes simultaneously [26].

Traditional hemoglobin detection methods often involve 
invasive blood draws and time-consuming laboratory analysis. 
There is a growing need for non-invasive, real-time, and highly 
sensitive hemoglobin sensors that can provide quick and 
accurate results. This study presents an advanced approach 
to hemoglobin detection through the design and analysis of a 
graphene-based metasurface sensor. By integrating the unique 
properties of graphene with noble metal nanostructures, we 
aim to develop a highly sensitive and tunable platform for 
hemoglobin sensing. The proposed sensor design leverages 
the exceptional optical and electronic properties of graphene, 
combined with the plasmonic characteristics of silver and gold 
nanostructures, to enhance detection capabilities. Furthermore, 
the integration of artificial intelligence using 1D convolutional 
neural network regression is aimed to increase the accuracy of 
the results and reduce the simulation time as well as resources.

Design and Modeling

The sensor design adopts a straightforward approach, using 
graphene as a key component. It features two distinct resona-
tor shapes: a square and a circular configuration, both posi-
tioned on a graphene layer. The sensor’s foundation is a SiO2 
substrate, which includes a ground plane back reflector. The 
substrate is square-shaped, with dimensions of 4 µm. The 
circular ring resonator is coated with silver. This resonator 
has an inner radius of 1 µm and an outer radius of 1.2 µm, 
with a SiO2 layer beneath it measuring 0.8 µm in thickness. 
The sensor design is optimized for effective interaction with 
incoming infrared radiation. A layer of graphene is applied 
to the square resonator. Infrared radiation from an external 
source interacts with the plasmonic materials, generating 
specific resonance peaks that are captured by an infrared 
detector. This process is fundamental to the sensor’s opera-
tion. The square resonator measures 3 µm and 3.5 µm. The 
sensor’s design is comprehensively illustrated in Fig. 1a, c, 
which presents the layout from three views: a 3D perspec-
tive, a top-down view, and a frontal cross-section.

Fabrication Feasibility of the Proposed Sensor 
Design

To fabricate the sensor, a silicon wafer is chosen as the base 
material and cleaned thoroughly to remove any contaminants. 
Next, a layer of SiO2 is grown on the silicon wafer through 
thermal oxidation, serving as the substrate for subsequent 
depositions. A metal layer (typically aluminum or silver) is 
then deposited onto the SiO2 layer to act as the ground plane 
back reflector, enhancing reflection efficiency. Following this, 
graphene is grown on top of the SiO2 substrate and metal 
reflector using chemical vapor deposition (CVD). This method 
is known for producing high-quality graphene films (Fig. 2).
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The graphene layer is then patterned to create square and 
circular ring resonators. This involves applying a photoresist 
layer, exposing it through a photomask to define the desired 
patterns, and developing the exposed photoresist to expose 
the graphene shape. A thin layer of silver (Ag) is deposited 
over the graphene to form the circular ring resonator struc-
ture. Subsequently, another layer of SiO2 is deposited on top 
to provide insulation and spacing between the resonators 
and the layers above. The process is repeated for the square 
ring resonator: lithography is used to define its shape, fol-
lowed by metal deposition to form the structure. After the 
final cleaning step to remove residues and contaminants, the 
fabricated sensor undergoes optional characterization tests to 
verify dimensions and ensure proper functionality.

Working of the Proposed Sensor Design

In real-time operation, the graphene-based metasurface 
sensor for hemoglobin detection functions through a series 
of well-coordinated steps. Initially, a biological sample, 

such as blood, is collected from the patient. This sample 
undergoes preparation, which may involve dilution or other 
processing to ensure compatibility with the sensor and to 
concentrate the hemoglobin. Once the sample is ready, the 
sensor is calibrated and initialized, ensuring that the SiO2 
substrate, graphene layer, and resonators are clean and prop-
erly aligned. The sensor is then integrated with the detection 
system, which includes an infrared (IR) radiation source and 
an infrared detector, forming a complete detection setup. The 
prepared blood sample is applied to the sensor’s surface, 
where hemoglobin molecules bind to the sensor’s graphene 
and metal nanostructures. Infrared radiation from the exter-
nal source is directed at the sensor, interacting with both the 
sample and the sensor’s plasmonic materials, which include 
silver and graphene resonators. This interaction generates 
plasmonic resonance peaks, highly sensitive to the presence 
of hemoglobin due to changes in the local refractive index. 
The infrared detector captures these resonance peaks, and 
any shifts in these peaks indicate the presence and concen-
tration of hemoglobin in the sample (Fig. 3).

Fig. 1   The conceptual layout 
of the sensor from various per-
spectives: a in three dimensions, 
b top view, and c frontal view
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Fig. 2   The fabrication of the 
sensor proposed in this study. 
This fabrication sequence inte-
grates photolithography, metal 
deposition, and dielectric layer 
deposition techniques
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Metasurface Analysis

Graphene’s conductivity is a result of its unique electronic prop-
erties, including its zero band gap, high electron mobility, and 
its distinctive electronic behavior as massless Dirac fermions 
[27–31]. These characteristics make graphene a material of great 
interest for future electronic and nanotechnology applications. 
The conductivity of graphene and its relationship with the chem-
ical potential are described by the following four equations [32]:
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The effectiveness of any sensor is evaluated using sev-
eral performance metrics that highlight its sensitivity, res-
olution, and overall functionality. One key metric is sen-
sitivity, which measures how the output frequency of the 
sensor changes in response to variations in the parameter 
being measured. Greater sensitivity means the sensor can 
detect smaller changes more effectively [33, 34]. The Fig-
ure of Merit assesses the sensor’s efficiency by comparing 
its sensitivity to its full width at half maximum (FWHM). 
A higher Figure of Merit indicates superior performance, 
suggesting that the sensor has high sensitivity relative to 

(4)�s = �intra + �inter

Fig. 3   The working principle 
of the sensor proposed in this 
study

Laser

Detector
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Plot

Table 1   Refractive indices of various hemoglobin compounds

RIs n1 n2 n3 n4

Value (RIU) 3.4 3.6 3.9 4.3
Concentration 10 20 30 40
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Fig. 4   The variations in transmittance response with respect to the alterations in the dimensions of the circular and the square resonators

Fig. 5   The transmittance response as dimensions of circular and square ring resonators varied. The effect of decreasing the circular and increas-
ing square resonator dimensions is also assessed
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its resolution [35]. Another significant metric is the qual-
ity factor, which indicates the sharpness of the sensor’s 
resonance. This factor compares the resonance frequency 
to the FWHM, with a higher value indicating a more accu-
rate and narrowly resonant sensor [36]. The detection limit 
defines the smallest amount of the measured parameter 
that the sensor can reliably detect, considering its sensitiv-
ity, resolution, and overall performance. A lower detection 
limit signifies that the sensor is more precise at identifying 
small changes [37]. Dynamic range quantifies the sensor’s 
capability to accurately handle varying signal levels. It 
is calculated as the ratio of the resonance frequency to 
the square root of the FWHM. A higher dynamic range 
suggests that the sensor can manage a wider range of sig-
nal intensities [38]. The signal-to-noise ratio measures 
the clarity of the signal against background noise. It is 
the ratio of the signal change to the noise level indicated 
by the FWHM. A higher signal-to-noise ratio reflects a 
clearer signal with less interference [39]. Sensor resolution 
integrates sensitivity with the detection limit to provide an 
overall assessment of the sensor’s capacity to detect small 
changes in the measured parameter, taking into account 
both sensitivity and the minimum detectable quantity 

[40]. Lastly, the detector accuracy, which is the inverse of 
the FWHM, indicates the sensor’s ability to differentiate 
between various signals. A larger detector accuracy sug-
gests improved resolution in distinguishing closely spaced 
signals [41]. Equations 5–12 provide a summary of these 
parameters [42]:
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Fig. 6   The variation of transmittance response in the form of line and colour plots as the thickness of the metasurface resonators changes

Fig. 7   The effect of GCP vari-
ation on transmittance drop in 
the form of the Fermi plot
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SiO2 refractive index is given by the Sellmeier equation 
[43].

The dielectric constant of gold is defined by [44].

The relationship between reflectance, angle of incidence, 
graphene potential, and conductivity is illustrated in the 
equations below [45].
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Fig. 8   The transmittance response varies with alterations in the refractive index of hemoglobin due to changes in concentration from 10 to 
40 g/L
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Fig. 9   The transmittance response varies due to changes in concentra-
tion from 10 to 40 g/L
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The reflection coefficient, which measures how much 
light is reflected from the surface, is influenced by both 
the angular frequency of the light and the angle at which 
it strikes the surface. This coefficient is also affected by 
the graphene potential and the specific characteristics of 
the metasurface. Graphene’s longitudinal conductivity is a 
crucial factor, representing its ability to conduct electric-
ity. This conductivity is related to the angular frequency 
and wave vector of the incident light. The reflection coef-
ficient can be expressed in terms of graphene’s longitudi-
nal conductivity. As the conductivity varies, so does the 
reflection coefficient, which in turn affects the overall 
reflectance of the biosensor. Reflectance is calculated by 
squaring the magnitude of the reflection coefficient. Con-
sequently, any change in the reflection coefficient will be 
reflected in the final reflectance value. A more detailed 
expression for reflectance considers both the real and 
imaginary parts of the conductivity. This formula shows 
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how the angle of incidence influences reflectance, high-
lighting the impact of changes in the real and imaginary 
components of conductivity. At normal incidence—when 
light strikes the surface perpendicularly—reflectance is 
calculated using the real and imaginary parts of the gra-
phene conductivity. This case provides insights into the 
biosensor's performance under direct light incidence.

Refractive Index‑Based Sensing

The refractive index is an essential optical property that 
indicates how light propagates through various sub-
stances. In medical and biological fields, measuring the 
refractive index is valuable for non-invasive analyses, 
such as assessing hemoglobin levels in blood [40, 41]. 
The refractive index of a substance is defined as the ratio 

Table 2   The performance metrics for the proposed sensor

λ (μm) 3.52 3.59 3.64 3.66
n (RIU) 1.34 1.36 1.39 1.43
dλ (μm) 0.07 0.05 0.02
dn (RIU) 0.02 0.03 0.04
S (nm/RIU) 3500 1667 500
FWHM (μm) 0.2 0.199 0.2 0.199
FOM (RIU−1) 17.5879 8.33333 2.51256
Q 17.6 18.0402 18.2 18.392
DL 0.04922 0.11314 0.47125
DR 7.87096 8.04763 8.13929 8.20455
SNR 0.35176 0.25 0.1005
SR 0.17227 0.18856 0.23562
DA 5 5 5 5
X 0.0202 0.01571 0.00789

Fig. 10   The electric field 
distribution of the proposed 
design at three distinct wave-
lengths: (a, b) 3.3 µm, (c, d) 
3.55 µm, and (e, f) 3.8 µm. The 
results indicate a significant 
enhancement in absorption, 
with the most pronounced 
effect observed at the 3.55 µm 
wavelength

(a)

(b)

(c)

(d)

(e)

(f)

y

z
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of the speed of light in a vacuum to its speed in the sub-
stance. In biological tissues, this index varies based on 
the composition and concentration of different elements. 
Hemoglobin, a protein found in red blood cells, affects 
the refractive index of blood because of its distinctive 
optical properties. Hemoglobin’s unique ability to absorb 
and scatter light differently from the surrounding blood 
plasma means that the concentration of hemoglobin 
impacts the blood’s refractive index. Generally, a higher 
hemoglobin concentration results in a higher refractive 
index, allowing for hemoglobin levels to be inferred 

indirectly through changes in the refractive index [43, 
46].

Various techniques employ the principle for hemoglobin 
detection. Optical methods, such as interferometry, 
measure changes in light interference patterns to detect 
variations in the refractive index [47]. Ellipsometry 
analyzes changes in light polarization after reflecting 
off a sample, revealing refractive index shifts due to 
hemoglobin. Optical coherence tomography (OCT) offers 
high-resolution tissue images by examining refractive index 
differences, which can be used to estimate hemoglobin 

Table 3   Comparison of the proposed sensor with other studies in the literature

S FOM (RIU−1) D.L (RIU) Materials Application

Ref [50] 1600 nm/RIU 1107.18 0.0004 Cu TB detection
Ref [51] 44.4 deg/100 fM - - Graphene Biodetection
Ref [52] 4000 nm/RIU−1 17,416.66 - - Aqueous solution detection
Ref [53] 150GHzRIU−1 0.039 - Graphene Detection of hemoglobin
Ref [54] 301.2°/RIU - - Ti, Mxene, and SrTiO3 Biosensing
Ref [55] 32,140°/RIU - - SrTiO3 and Ag Biomedical applications
Proposed sensor 3500nmRIU−1 17.6 0.05 Graphene, Au, and Ag Detection of hemoglobin

Fig. 11   The scatter plots(SP) for 1D-CNN regressor models trained using different R (dimensions of the circular ring resonator)
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levels[48]. Spectroscopic techniques also contribute. 
Absorption spectroscopy assesses how hemoglobin absorbs 
light at specific wavelengths, providing concentration data. 
Raman spectroscopy detects molecular vibrations related 
to hemoglobin, allowing concentration determination from 
spectral changes. These refractive index-based techniques 
have practical uses in medical diagnostics. They can enable 
rapid, non-invasive anemia screening by detecting low 
hemoglobin levels and monitoring blood disorders like 
sickle cell disease or thalassemia. Additionally, advanced 
methods that combine refractive index measurements 
with other optical techniques could potentially offer non-
invasive glucose monitoring by analyzing hemoglobin 
concentration changes (Table 1).

Results and Discussion

In this study, COMSOL Multiphysics version 6.2 is used 
for modeling the proposed biosensor. The design inte-
grates a metasurface and undergoes comprehensive anal-
ysis, including the optimization of geometric parameters 
to enhance sensitivity and other critical performance 

metrics. The assessment focuses on evaluating transmit-
tance, reflectance, and the spatial distribution of electric 
fields within the sensor. Additionally, we use machine 
learning techniques to predict the sensor’s performance.

Parametric Analysis

The performance of the proposed sensor is intrinsically 
linked to its geometric parameters. To thoroughly explore 
this relationship, we conducted an extensive analysis focus-
ing on two primary resonator types: the circular ring resona-
tor and the square ring resonator.

This study aimed to investigate how variations in these 
resonators influence both transmittance and reflectance. 
Furthermore, we examined the combined effects of simul-
taneous adjustments to these resonators on transmittance. 
Initially, the analysis concentrated on varying the circu-
lar ring resonator, with the results presented in Figs. 4a, 
b. This investigation covers a wavelength range of 4 to 
4.25 μm, varying the resonator size from 0.8 to 1.2 μm. 
Figure 4a illustrates the variation in transmittance across 
different dimensions of the circular ring resonator. The 
data presented include resonator sizes of 0.8 μm, 0.9 μm, 

Fig. 12   The heat map table (HT) for 1D-CNN regressor models trained using different combinations of R
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1.0 μm, 1.1 μm, and 1.2 μm. A significant observation is 
the pronounced decrease in transmittance, which drops to 
25.3% for a resonator size of 0.8 μm. Figure 4b demon-
strates a clear correlation between the size of the ring reso-
nator and the transmittance of the sensor. The data consist-
ently show that larger resonator dimensions are associated 
with leftward shift in transmittance, a trend that is evident 
across the entire range of 4 to 4.25 μm wavelength band.

In the third case, a simultaneous adjustment of circular 
and square ring resonators was conducted. The first case 
involved the expansion of the circular ring while propor-
tionally reducing the square ring. The results of this analysis 
are demonstrated in Figs. 5a, b. The dimensional range for 
both resonators was systematically varied from 0.8 μm to 
1 μm. The analysis indicates a maximum transmittance drop 
of 11% when the diameter of the circular ring resonator is 
set at 0.8 μm. Figure 5b provides a fermi plot representation 
of the same results. In the fourth investigation, the study 
centered on evaluating the effect of decreasing the size of 
the circular ring while increasing the size of the square ring. 
The results are exemplified in Figs. 5c, d. Here, the dimen-
sions of both resonators varied within the range of 1 μm to 
1.3 μm. The study demonstrates a peak transmittance drop 

of 19.1% for the dimension of 1.2 μm. Figure 5d visually 
represents these results with a color-coded plot, demon-
strating the relationship between resonator dimensions and 
transmittance variations.

In the fifth analysis, we investigated the effect of vary-
ing the resonators’ thickness from 0.1 to 0.5 μm on sensor 
performance. This study focused on the sensor’s response 
across wavelengths ranging from 3.79 to 3.84 μm. The 
results are illustrated in Figs. 6a, b, which depict the impact 
of resonator thickness on sensor behavior. Figure 6a dem-
onstrates that the maximum transmittance drop is attained 
with the smallest dimension of 0.1 μm. Figure 6b provides 
a color-coded representation indicating the same results. 
Lastly, we examined how the graphene chemical potential 
(GCP) affects the transmittance response of the sensor. To 
do this, we varied the GCP from 0.1 to 0.9 eV in increments 
of 0.1 eV and displayed the resulting response in Fig. 7, 
using a color plot.

The influence of varying the graphene chemical potential 
(GCP) on the sensor’s transmittance is depicted in Fig. 7, 
which spans a wavelength range of 3.4 to 3.8 µm. Figure 7 
demonstrates clearly that with increasing GCP values, the 
transmittance response is affected progressively.

Fig. 13   The SP for 1D-CNN regressor models trained using different combinations of S (dimensions of square ring resonator)
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Detection Analysis

After optimizing the design of the proposed metasurface-
based sensor, we employed it to detect hemoglobin lev-
els with heightened precision. Hemoglobin concentration 
fluctuations are known to affect the refractive index of the 

solution. In this study, the hemoglobin concentration varied 
across a specified range from 10 to 40 g/L, increasing in 
10 g/L increments to cover a broad spectrum of concen-
trations. To ensure accuracy, we prepared solutions with 
hemoglobin concentrations of 10 g/L, 20 g/L, 30 g/L, and 
40 g/L.Corresponding to these concentrations, we recorded 

Fig. 14   The HT for 1D-CNN regressor models trained using different combinations of S

Fig. 15   The SP for 1D-CNN regressor models trained using different combinations of parameter U (variation of circular and square ring resona-
tor)
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the refractive indices as 1.34, 1.36, 1.39, and 1.43, respec-
tively [49].

Figures 8a–d present the transmittance spectra for the 
proposed sensor design, demonstrating its performance 
in detection analysis. Figures 8a–d collectively depict the 
variation in transmittance as the refractive index increases 
from 1.34 to 1.43 across different wavelength ranges. Fig-
ure 8a illustrates a rightward in the transmittance response 
as the refractive index rises, indicating a shift towards 
longer wavelengths. This rightward shift signifies a modi-
fication in the sensor’s optical behavior induced by the 
variation in the concentration of hemoglobin. The same 
results are depicted across 3.16–3.26 μm as exemplified in 
Fig. 8c as well as across the 3.3–3.7 μm wavelength band 
as depicted in Fig. 8d. The observed changes in transmit-
tance are critical for assessing the sensor’s sensitivity to 
refractive index variations. Moreover, we also conducted 
an extensive analysis to thoroughly inspect the relationship 
between various refractive indices (RIs) and the resonance 
wavelength (λ). The results of this in-depth investigation 
are depicted in the detailed Fig. 9a. Additionally, we also 
evaluated how different concentrations of hemoglobin 
relate to and impact the resonance wavelength, particularly 

focusing on evaluating where the distinct transmittance 
dips occur, as this information is crucial for effective 
detection. The outcomes and findings of this specific 
focused aspect of the broader study are presented in the 
informative Fig. 9b. Based on these comprehensive analy-
ses, Eqs. 28 and 29 are attained.

These empirically derived equations show a high degree 
of correlation, with impressive R2 scores of 90% and 
94.6% respectively.

Electric Field Analysis

Figure  10 illustrates the electric field distributions for 
the proposed sensor design at three wavelengths: 3.3 μm, 
3.55 μm, and 3.8 μm. At a wavelength of 3.55 μm, there 
is a significant increase in absorption, as evidenced by the 
high electric field concentrations observed in Fig. 10c, d. 
These plots indicate a higher absorption of electromagnetic 

(21)� = 1.4783RI + 1.5625

(22)� = 0.0047C + 3.4850

Fig. 16   The HT for 1D-CNN regressor models trained using different combinations of parameter U
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energy at this wavelength. Conversely, at 3.3 μm and 3.8 μm, 
as depicted in Figs. 10a, b, e, and f, the electric field con-
centrations are markedly lower. This suggests that the sen-
sor structure is optimized to enhance transmittance at these 
wavelengths, thereby reducing the absorption of incoming 
radiation. These observations highlight the variation in the 
sensor's absorption and transmission characteristics across 
different wavelengths, which is essential detection of the 
corresponding analytes.

Table 2 presents the performance parameters of the 
proposed sensor design. The table presents these param-
eters across different wavelengths (λ) ranging from 3.52 to 
3.66 μm. The corresponding refractive indices (n) of blood 
components measured in refractive index units (RIU) are 
1.34, 1.36, 1.39, and 1.43, respectively. The wavelength 
resolution (dλ) varies from 0.07 to 0.02 μm across these 
wavelengths. The sensor demonstrates sensitivities (S) 
ranging from the minimal value of 500 nm/RIU to the opti-
mal value of 3500 nm/RIU, indicating how much the wave-
length shifts per unit change in refractive index. The mini-
mal full width at half maximum is 199 GHz. The quality 
factor (Q) values range from 17.6 to 18.392. The detection 

limits (DL) vary between 0.04922 RIU and 0.47125 RIU, 
while the dynamic range (DR) values span from 7.87096 
to 8.20455. The sensor resolution (SR) values show minor 
fluctuations between 0.17227 and 0.23562, highlighting 
the sensor’s ability to resolve fine changes. The maximum 
detection accuracy is 5. Lastly, the uncertainties (X) range 
from 0.0202 to 0.00789. Moreover, a comparative analysis 
was performed between the proposed designs and those 
previously published, with the results presented in Table 3. 
The findings clearly show the exceptional performance of 
the proposed sensor design.

Machine Learning Optimization Using 
1D‑CNN Regression Model

Convolutional neural networks (CNNs) have transformed 
computer vision and image processing tasks. Although 
they are widely recognized for their effectiveness with two-
dimensional (2D) data, they have increasingly been applied 
to one-dimensional (1D) data. This trend is particularly 
notable in tasks involving sequential or time-series data, 

Fig. 17   The SP for 1D-CNN regressor models trained using different combinations of parameter V (variation of square and circular ring resona-
tor)
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where 1D-CNN regression models are utilized for predic-
tion purposes [56]. The 1D-CNN regression model is an 
adaptation of the classic CNN design specifically designed 
for processing one-dimensional data, like sensor readings, 
audio signals, or time-series data from diverse domains. 
These models harness CNNs’ convolutional operations 
and hierarchical feature extraction abilities to glean sig-
nificant representations from the input data. This enables 
them to discern complex patterns and dependencies effec-
tively [57]. A typical architecture of a 1D-CNN regression 
model includes several convolutional layers, where each 
layer employs one-dimensional filters that slide across the 
input sequence. These filters extract local features by apply-
ing learnable weights to segments of the input data. Fol-
lowing the convolutional layers, pooling layers are often 
used to downsample the feature maps. This downsampling 
helps in achieving translation invariance, thereby enhanc-
ing the model's ability to handle minor variations in the 
input data [58]. Once the convolutional and pooling stages 
in a 1D-CNN regression model have processed the input 
sequence and extracted relevant features, the resulting fea-
ture maps are flattened into a one-dimensional vector. This 
flattened representation is then fed into one or more fully 

connected layers (also known as dense layers). These fully 
connected layers integrate the learned features across the 
entire sequence and prepare them for prediction. In the 
context of regression tasks, the final output layer usually 
consists of a single neuron. This neuron outputs a continu-
ous numerical value, which represents the predicted target 
variable based on the learned features from the preceding 
layers. This output is directly interpretable as the model's 
prediction for the given input sequence[59]. Using 1D-CNN 
regression models offers several advantages. One significant 
benefit is their capacity to autonomously extract pertinent 
features from input data, eliminating the necessity for exten-
sive manual feature engineering. Moreover, these models 
excel at capturing prolonged dependencies and temporal 
patterns within data, rendering them highly suitable for 
tasks like time-series forecasting and anomaly detection, 
as well as various regression-based prediction tasks. Addi-
tionally, 1D-CNN regression models lend themselves well 
to augmentation or integration with other neural network 
architectures. For instance, they can be seamlessly com-
bined with recurrent neural networks (RNNs) or attention 
mechanisms [60]. This integration enhances their mode-
ling capabilities, allowing them to better adapt to diverse 

Fig. 18   The HT for 1D-CNN regressor models trained using different combinations of parameter V
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problem domains and unique data characteristics. Thus, 
1D-CNN regression models stand out for their versatility 
and effectiveness in tackling a broad spectrum of predictive 
tasks [61].

The study aims to rigorously assess the predictive 
accuracy of a regression model by subjecting it to various 
test cases denoted. Each test case involves the random 
extraction of subsets from the dataset. The remaining data 
is used for training the model to ensure robustness and 
generalizability. The evaluation metric employed is the 
coefficient of determination (R2 score), which measures 
how well the model can predict the variance in the target 
variable based on the input features. This metric is essential 
for quantifying the model’s predictive performance and its 
ability to capture the underlying relationships in the data.

Some of the equations employed in the model analysis 
include the following:

Convolution operation [62]

ReLU activation function [63]

(23)(f × g)(t) = ∫ f (�)g(t − �)d�

Batch normalization [64]

Dropout [65]:

Loss function (e.g., mean squared error) [66]:

Gradient descent update rule

The coefficient of determination

(24)(f × g)(t)

(25)y =
γ × ((x − μ)

√(
σ2 + ε

)
+ β

(26)y = f (x) × mask,wheremask ∼ Bernoulli(p)

(27)MSE =
(
1

N

)
x
∑

(i = 1 to N)(yi − ŷ
2

n
)

(28)� = � − � × ∇J(�)

(29)

R2 =

∑N

i=1
(Predicted Target Valuei − Actual Target Valuei)

∑N

i=1

�
Actual Targeti − Average Target Value

�2

Fig. 19   The SP for 1D-CNN regressor models trained using different combinations of parameter T (resonator thickness)
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We have conducted a prediction analysis of the R2 
scores for variations in the circular ring resonator, with the 
results detailed in Figs. 11a–e and 12a–d for various test 
cases (TC). These figures present the prediction accuracy 
across different combinations of circular ring resonator 
dimensions and polynomial degree features, leveraging 
both SP and HT plots. As exemplified Figs. 11a–e dem-
onstrate that the highest R2 scores of 99.99% (TC = 0.2), 
99.96% (TC = 0.25), 99.97% (TC = 0.3), 99.95% 
(TC = 0.35), and 100% (TC = 0.4) are achieved for reso-
nator values of 0.8 μm, 0.9 μm, 1 μm, 1.1 μm, and 1.2 μm, 
respectively. Also, the heat map plots in Figs. 12a–d dem-
onstrate an improvement in R2 scores: from 0.96 to 1 for 
TC = 0.1, from 0.92 to 1 for TC = 0.2 and TC = 0.3, and 
from 0.95 to 1 for TC = 0.4. These enhancements result 
from an increase in the polynomial degree from 1 to 6.

The performance of 1D-CNN regression models trained 
various TC values is depicted in Figs. 13a–e and 14a–d. 
These figures show the model performance across different 
combinations of square ring resonator values and polyno-
mial degree features, using both scatter plots (SP) and heat 
map (HT) visualizations. As demonstrated by the scatter 

plots, the R-squared (R2) scores achieved by the models are 
99.89% (TC = 0.1), 99.96% (TC = 0.2), 99.87% (TC = 0.26), 
99.91% (TC = 0.3), and 99.99% (TC = 0.35) for resonator 
values of 2.5 μm, 2.7 μm, 2.9 μm, 3.1 μm, and 3.3 μm, 
respectively. These exceptionally high R2 values indicate that 
the 1D-CNN models are able to explain over 99.8% of the 
variance in the target variable for these test cases. Again, the 
heat map plots in Figs. 12a–d demonstrate an improvement 
in R2 scores as the polynomial degree is increased from 1 to 
6. Specifically, the R2 values increase from 0.87 to 1.0 for 
test case 0.1, from 0.88 to 1.0 for test cases 0.2 and 0.3, and 
from 0.89 to 1.0 for test case 0.4. These results suggest that 
higher-order polynomial features can significantly enhance 
the predictive performance of the 1D-CNN regression mod-
els for the given problem domain.

The R2 scores for 1D-CNN regression models, evalu-
ated across different test cases, are depicted in Figs. 15a–c 
and 16a–d. These figures illustrate the models’ perfor-
mance with various combinations of the U parameter and 
polynomial degree features, as shown in the SP and HT 
plots. Notably, the highest R2 scores achieved are 99% for 
TC = 0.3, 99.9% for TC = 0.2, and 100% for TC = 0.35, 

Fig. 20   The HT for 1D-CNN Regressor models trained using different combinations of parameter T
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corresponding to U values of 0.8 μm, 0.9 μm, and 1 μm, 
respectively. Moreover, the heat map plots in Figs. 16a–d 
reveal that increasing the polynomial degree from 1 to 6 
leads to improved R2 scores. Specifically, R2 values range 
from 0.94 to 1.0 for test case 0.1, from 0.91 to 1.0 for test 
cases 0.2 and 0.3, and from 0.93 to 1.0 for test case 0.4. 
The same results are attained for the variation of param-
eters V and T as depicted by scatter plots in Figs. 17a–d, 
Fig. 18, and Fig. 19a–e and heat map plots in Figs. 18a–d 

and Figs. 20a–d, where an optimum R2 score of 1 is att
ained.

The performance of the 1D-CNN regression models, 
trained on various TCs, is exemplified in Figs. 21a–i and 
22a–d. These figures depict the models’ behavior across 
different combinations of GCP values and polynomial 
degrees, represented by scatter plots (SP) and heat map 
(HT) visualizations. Notably, the models achieved excep-
tionally high R-squared (R2) scores, ranging from 99.91 

Fig. 21   The SP for 1D-CNN regressor models trained using different combinations of GCP values
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to 99.99% for test case values of 0.26, 0.27, 0.28, 0.29, 
0.30, 0.31, 0.32, 0.33, and 0.34. These results indicate 
that the 1D-CNN regression models are able to explain 
over 99.9% of the variance in the target variable for these 
test cases, demonstrating their strong predictive capabil-
ity. Moreover, the heat map plots in Figs. 22a–d demon-
strate that increasing the polynomial degree from 1 to 6 
leads to improved R2 scores. Specifically, the R2 values 
range from 0.82 to 1.0 for test cases 0.1, 0.2, 0.3, and 
0.4, indicating that higher-order polynomial features can 
significantly enhance the performance of the 1D-CNN 
regression models.

The effectiveness of the 1D-CNN regression models, 
which were trained on various test cases, is illustrated in 
Figs. 23a–d and 24a–d. The scatter plots in these figures 
show that the models achieved exceptional R-squared (R2) 
scores of 99.94%, 99.95%, 99.96%, and 99.97% for test case 
(TC) values of 0.1, 0.15, 0.2, 0.25, and 0.3, respectively. 
These remarkably high R2 values indicate that the 1D-CNN 
models are able to explain over 99.9% of the variance in 
the target variable for these test cases, demonstrating their 
strong predictive performance. On the other hand, the heat 

map plots in Figs. 24a–d demonstrate that increasing the 
polynomial degree from 1 to 6 leads to improved R2 scores. 
Specifically, the R2 values range from 0.93 to 1.0 for test 
cases 0.1, 0.2, 0.3, and 0.4.

Limitations and Future Work

While the proposed graphene-based metasurface sensor 
for hemoglobin detection shows promising results, it is 
important to acknowledge several limitations and potential 
avenues for future research. The current design focuses 
on a single sensor unit, and future work should explore 
scaling up the system to create sensor arrays or integrate 
multiple sensors on a single chip. This could enable simul-
taneous detection of multiple biomarkers or improve the 
spatial resolution of hemoglobin measurements. The sen-
sor’s performance under varying environmental condi-
tions, such as temperature fluctuations and humidity, needs 
further investigation. Developing strategies to maintain 
accuracy and reliability in real-world settings is crucial 
for practical applications. Additionally, power efficiency 

Fig. 22   The HT for 1D-CNN regressor models trained using different combinations of GCP values
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is an important consideration for portable or implantable 
devices. Future research should focus on optimizing the 
design for low power consumption without compromis-
ing sensitivity. While the sensor shows high sensitivity 
to hemoglobin, its selectivity in complex biological flu-
ids containing multiple proteins and potential interfer-
ents should be thoroughly evaluated. Developing surface 
functionalization strategies to enhance specificity could be 
a valuable avenue for future work. The proposed design 
involves intricate nanostructures and multiple materials, so 
investigating cost-effective and scalable fabrication meth-
ods compatible with existing semiconductor manufactur-
ing processes would be beneficial for commercialization. 
Adapting the sensor for continuous, real-time hemoglobin 
monitoring could greatly enhance its clinical utility. This 
may involve developing microfluidic systems for sam-
ple handling and exploring ways to improve the sensor’s 
response time. While the current study demonstrates the 

potential of machine learning for predicting sensor behav-
ior, future work could explore more advanced AI tech-
niques for real-time data analysis, pattern recognition, and 
decision support in clinical settings. For in vivo appli-
cations, the biocompatibility and long-term stability of 
the sensor materials need to be thoroughly investigated. 
This includes studying the potential degradation of the 
graphene and metal nanostructures in biological environ-
ments. Further miniaturization of the sensor and associ-
ated readout electronics could enable the development of 
minimally invasive or implantable devices for continuous 
hemoglobin monitoring. Finally, extensive clinical stud-
ies comparing the sensor’s performance to gold standard 
hemoglobin measurement techniques are necessary to vali-
date its accuracy and reliability in diverse patient popu-
lations. Addressing these challenges and exploring these 
avenues for future research will be crucial for advanc-
ing the proposed hemoglobin sensor towards real-world 

Fig. 23   The SP for 1D-CNN regressor models trained using different combinations of RI values
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applications in healthcare and diagnostics. Collaborative 
efforts between materials scientists, biomedical engineers, 
and clinicians will be essential in overcoming these limita-
tions and realizing the full potential of this technology.

Conclusion

To sum up, this study has presented an advanced 
approach to hemoglobin detection through the design and 
analysis of a graphene-based metasurface sensor. By inte-
grating the exceptional optical and electronic properties 
of graphene with the plasmonic characteristics of silver 
and gold nanostructures, the proposed sensor exhibits 
enhanced sensitivity, resolution, and overall performance 
for the detection of hemoglobin. The comprehensive par-
ametric analysis and optimization conducted in this work 
have demonstrated the sensor’s ability to resolve changes 
in hemoglobin concentration through distinct shifts in 

transmittance and reflectance spectra. The resulting sen-
sor design achieved a remarkable sensitivity of 3500 nm/
RIU, a maximum figure of merit of 17.6, and a detection 
limit of 0.05 RIU, showcasing its superior performance 
compared to previously reported hemoglobin sensors. 
Furthermore, the integration of a 1D convolutional neu-
ral network regression model enhances the accuracy 
of the proposed sensor as well as reduces the time and 
resources required for simulation and optimization. The 
exceptional characteristics of the proposed graphene-
based metasurface sensor, combined with its artificial 
intelligence-assisted performance prediction, establish 
it as a promising platform for various medical diagnos-
tics and healthcare applications that require precise and 
sensitive hemoglobin monitoring. The sensor’s ability 
to provide rapid, non-invasive, and reliable hemoglobin 
detection holds significant potential to improve patient 
care and facilitate timely diagnosis and monitoring of 
related health conditions.

Fig. 24   The HT for 1D-CNN regressor models trained using different combinations of RI values
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