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The distinctiveness of neural information representation is crucial for successful memory performance but declines with advancing
age. Computational models implicate age-related neural dedifferentiation on the level of item representations, but previous studies
mostly focused on age differences of categorical information representation in higher-order visual regions. In an age-comparative
fMRI study, we combined univariate analyses and whole-brain searchlight pattern similarity analyses to elucidate age differences in
neural distinctiveness at both category and item levels and their relation to memory. Thirty-five younger (18-27 years old) and 32
older (67-75 years old) women and men incidentally encoded images of faces and houses, followed by an old/new recognition memory
task. During encoding, age-related neural dedifferentiation was shown as reduced category-selective processing in ventral visual cortex
and impoverished item specificity in occipital regions. Importantly, successful subsequent memory performance built on high item sta-
bility, that is, high representational similarity between initial and repeated presentation of an item, which was greater in younger
than older adults. Overall, we found that differences in representational distinctiveness coexist across representational levels and con-
tribute to interindividual and intraindividual variability in memory success, with item specificity being the strongest contributor. Our
results close an important gap in the literature, showing that older adults’ neural representation of item-specific information in addi-
tion to categorical information is reduced compared with younger adults.
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A long-standing hypothesis links age-related cognitive decline to a loss of neural specificity. While previous evidence supports
the notion of age-related neural dedifferentiation of category-level information in ventral visual cortex, whether or not age
differences exist at the item level was a matter of debate. Here, we observed age group differences at both levels as well as asso-
ciations between both categorical distinctiveness and item specificity to memory performance, with item specificity being the
strongest contributor. Importantly, age differences in occipital item specificity were largely due to reduced item stability
across repetitions in older adults. Our results suggest that age differences in neural representations can be observed across the
entire cortical hierarchy and are not limited to category-level information. /

ignificance Statement

Introduction
A prominent theory of cognitive aging assumes that neural rep-
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resentations become less distinctive in old age and that this so-
called neural dedifferentiation underlies age-related cognitive
impairments (e.g., S. C. Li et al., 2001; J. Park et al., 2010; Koen
and Rugg, 2019). In computational models, age differences have
been ascribed to deficient neuromodulation that causes haphaz-
ard activation to identical informational input, leading to lower
stability (i.e., consistency of neural activity across repetitions) of
representations on the item level as well as increasing random
activation variability within the network, leading to a decrease in
the distinctiveness of the network’s representations (S. C. Li et
al., 2000, 2001; S. C. Li and Sikstrém, 2002). Importantly, defi-
cient neuromodulation thus results in age differences in neural
information representation that coexist at various levels, that is,
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at the level of item representations and the level of category rep-
resentations, and jointly affect memory performance. However,
previous age-comparative studies (mainly using fMRI) have
nearly exclusively focused on age-related dedifferentiation in cat-
egorical representations, neglecting age differences at the level of
item representations that possibly occur already during earlier
stages of visual processing. Hence, while long-standing observa-
tions from behavioral aging research suggest a close connection
between age differences in sensory processing and decline in
higher order cognition (e.g., Lindenberger and Baltes, 1994;
Baltes and Lindenberger, 1997; Schneider and Pichora-Fuller,
2000; K. Z. Li and Lindenberger, 2002), the limited available evi-
dence has not yet allowed to settle the debate whether or not age
differences in neural distinctiveness already exist at the level of
item representations (Koen and Rugg, 2019). We therefore set
out to track age differences at different representational levels,
ranging from item-level specificity to category selectivity, with
the goal to delineate their unique and joint contribution to mem-
ory performance in younger and older adults.

The available evidence clearly supports the notion of age-related
neural dedifferentiation of category information. Focusing on age
differences in the representation of broader categories, such as faces,
houses, or objects within the ventral visual cortex (VVC) (D. C.
Park et al., 2004; Payer et al., 2006; Voss et al., 2008; J. Park et al.,
2012; Koen et al., 2019; Srokova et al., 2020), previous studies made
use of the preferential response of these regions to specific stimulus
categories (Kanwisher et al,, 1997; Epstein and Kanwisher, 1998;
Grill-Spector and Malach, 2004). For example, using conventional
univariate analyses, D. C. Park et al. (2004) demonstrated that, com-
pared with young adults, older adults exhibited less category-selec-
tive BOLD responses to stimuli of faces, houses, chairs, and
pseudowords, providing the first human evidence for age-related
neural dedifferentiation in the VVC (see also Payer et al., 2006; J.
Park et al, 2012 and, accounting for trialwise BOLD variability:
Koen et al., 2019; Voss et al,, 2008). Directly probing the (dis-)simi-
larity of distributed, multivariate activation patterns, with represen-
tational similarity (compare Edelman, 1998; Kriegeskorte et al,
2008) or decoding techniques (compare Haynes and Rees, 2006;
Mur et al.,, 2009), subsequent studies revealed that different stimulus
categories were represented less distinctively in category-selective
areas in the VVC in older compared with younger adults (J. Park et
al., 2010; Carp et al,, 2011; Koen et al,, 2019; Trelle et al., 2019). A
few age-comparative studies also investigated neural distinctive-
ness at the within category (Goh et al.,, 2010) or even item level
(Trelle et al., 2019). Unfortunately, with few exceptions (St-
Laurent et al., 2014; Sommer et al., 2019), these studies focused
on predefined category-specific regions. However, it is very
likely that processing of item-specific representations is also
supported by other brain regions than those showing category
selectivity (see, e.g., Kriegeskorte et al., 2007). We therefore
speculated that age differences in item specificity may have
gone unnoticed in most studies with ROI approaches that
focused on category-specific brain regions.

Importantly, assuming that an altered signal-to-noise ratio in
neural information processing leads to more variable neural
responses in old age (S. C. Li et al., 2001), item-level specificity in
older adults may depend critically on representational item sta-
bility, that is, the consistency with which individual items are
represented across several instances of encoding. However, while
studies with young-adults-only samples have already revealed
the importance of item stability (inside and outside of category-
selective areas including, for instance, occipital cortex) for
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memory performance (Xue et al.,, 2010; Ward et al., 2013), so far
only one study (Zheng et al, 2018) compared item stability
across repeated encoding between younger and older adults.
They found that, independent of their distinctiveness from other
representations, item stability in the visual cortex was reduced in
older adults and was associated with lower memory performance
compared with young adults. Moreover, item stability was an im-
portant contributor to memory performance as indicated by sub-
sequent memory effects (compare Paller and Wagner, 2002).
However, age differences were less clear regarding item specific-
ity, a measure calculated similarly to item stability but corrected
for similarity of items from the same category. This inconsistency
provoked criticism regarding the validity of the results (see Koen
and Rugg, 2019).

In sum, there is a clear tension between model-derived pre-
dictions for neural dedifferentiation and available empirical sup-
port. While many studies provided coherent evidence for neural
dedifferentiation with age at the category level (for review, see
Koen and Rugg, 2019; Koen et al., 2020), they did not directly
test a central tenet of computational models of dedifferentiation
(S. C. Li et al, 2000, 2001; S. C. Li and Sikstrém, 2002), namely,
reduced distinctiveness of single-item representations. Thus,
whether age differences exist at the level of item representations
is an ongoing debate in the field based on highly limited evidence
(see e.g., Koen and Rugg, 2019). Hence, in the current age-com-
parative fMRI study, we combined conventional ROI-based
univariate analysis and whole-brain searchlight pattern similar-
ity analysis to elucidate age-related differences in neural speci-
ficity both at the level of categorical information as well as at
the level of the individual items, and their relation to memory
performance.

Materials and Methods

Participants

The face-house task described in the current report was embedded in a
larger study with an overall sample consisting of 47 younger and 49 older
healthy adults who participated in several structural MRI scans and addi-
tional behavioral tasks inside and outside the MR scanner. Thirty-nine
young and 37 older adults completed the face-house task. We excluded
3 participants (2 young adults and 1 older adult) because of memory per-
formance below chance level and 6 participants (2 young adults and 4
older adults) because of a failure to detect category-selective clusters (see
below). Therefore, final analyses were based on a sample of 35 young
adults (age: mean =22.11 years, SD =2.70 years, range = 18-27 years; 17
female; 18 male) and 32 older adults (age: mean =70.72 years, SD =2.26
years, range = 67-75years; 19 female; 13 male) with normal or cor-
rected-to-normal vision and no history of neurologic or psychiatric dis-
eases. No participant was taking any medications known to affect brain
functions. A potential confounding factor of age differences in fMRI-
based measures are age-related changes in the neurovascular system
(compare D’Esposito et al., 1999; Grinband et al, 2017; Lu and Liu,
2017; West et al,, 2019). In the present study, participants were carefully
screened for comorbidities, and their medications that could affect blood
flow (e.g., hypertension) (compare Gazzaley and D’Esposito, 2005).
Furthermore, we screened all older adults with the Mini-Mental State
Examination (Folstein et al., 1975), and none scored below the threshold
of 26 points (mean=29.19; SD =1.12; range =26-30). All participants
gave written informed consent to take part in the experiment. All proce-
dures were approved by the ethics committee of the German Society for
Psychological Research.

Stimuli and procedure

Stimulus material. Overall, the stimulus set comprised 300 grayscale
pictures from three different categories: 120 neutral faces (adapted from
the FACES database; Ebner et al., 2010); 120 houses (in part adapted
from D. C. Park et al,, 2004; and in part obtained through web search);
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Figure 1.

Task design and schematic of representational similarity levels. A, The paradigm comprised an encoding (top) and recognition (bottom) task. During encoding, participants were

asked to press a button whenever a previously trained target image appeared. During recognition, participants responded via button press whether each presented image was old or new.
Here, only sample stimuli from a face block are shown for illustration, but also houses and baseline control stimuli were presented. B, lllustration of the block design of encoding and recogni-
tion tasks. The encoding task consisted of two identical runs, each of which comprised 3 face, 3 house, and 3 baseline (phase-scrambled faces and houses) blocks in alternating and counterbal-
anced order (either starting with a face or house block). In each block, 20 exemplars of the respective category (face, house, baseline) were presented plus one target stimulus. The recognition
task consisted of 3 face and 3 house blocks in alternating and counterbalanced order. In each block, 20 old and 20 new faces/houses were presented. C, Simplified illustration of the computed
representational similarity levels. For each item presented in encoding run 1, neural pattern similarity was computed as the Pearson correlation of the BOLD pattern elicited by that item and
the BOLD pattern(s) elicited by (Ca) all items of the respective other category in run 1 (between-category similarity), (Cb) all other items of the same category in run 1 (within-category similar-
ity in run 1), (Cc) all other items of the same category in run 2 (within-category similarity across runs), and (Cd) the same item in run 2 (within-item similarity; stability). For each subject, the
respective similarity measure was averaged across items, resulting in one similarity value for each representational level. Category representation specificity was calculated as the difference of
between-category and within-category similarity (Cb — Ca). Item representation specificity was calculated as the difference of within-category (across runs) and within-item similarity (Cd — Cc)

for faces and houses, respectively. These similarities were assessed based on ROIs as well as a searchlight approach.

and 60 phase-scrambled images (30 faces and 30 houses, constructed
from randomly chosen pictures of the faces/houses sets) as control stim-
uli. Face stimuli furthermore consisted of four subcategories, split by age
group (i.e., young vs old) and gender (i.e., female vs male). Similarly,
house stimuli comprised four subcategories, namely, apartment build-
ings, family houses, sheds, and warehouses. In addition, three target
stimuli were used for the encoding task, comprising a specific face image,
a specific house image, and a phase-scrambled image with a white square
in the center. All 240 nontarget face and house stimuli were split into
two sets of 120 items (60 faces and 60 houses comprising 15 stimuli of
each subcategory) to present one set during encoding and recognition
(old items) and the other set only during recognition (new items). The
same item sets were used as old or new items across subjects.

Procedure. Here, we focused on the face-house task consisting of an
incidental encoding phase and a surprising recognition test, both con-
ducted inside the MR scanner (see Fig. 14). After verbal and written
instructions, giving consent, and performing several behavioral tasks,

including a short training of the encoding task, participants were posi-
tioned into the scanner. Here, they again practiced the task for a few trials.
The encoding phase consisted of two identical runs, including 9 stimulus
blocks each (see Fig. 1B). Stimuli were presented using Psychtoolbox
(Psychophysics Toolbox) for MATLAB (The MathWorks). During each
block, one target (for which participants had to respond) and 20 nontarget
images of the same category (i.e., faces, houses, or phase-scrambled con-
trols) were presented for 1200 ms with a fixation cross shown between tri-
als (jittered; ranging from 500to 8000 ms). While face or house blocks
included five images from each of the four subcategories, phase-scrambled
blocks comprised 10 scrambled face images and 10 scrambled house
images. Stimuli were randomly distributed into the blocks. Stimulus order
was pseudo-randomized with the restriction that no subcategory appeared
twice in a row and the target image was presented neither in the first four
nor the last four trials of a block. The order of the blocks was alternating
and counterbalanced across participants with either starting with a face or
house block. Because of a technical failure, the identical stimulus order
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solution was used for all participants starting with a face block and in 36
participants starting with a house block. To ensure attention to all stimuli
during encoding, subjects were instructed to engage in a vigilance task
asking them to press a button with their right index finger whenever one
of the three target images was presented. Such target trials were excluded
from further analyses. In the second run, blocks and trials were exactly
repeated as in the first run (i.e., each image was presented twice during
encoding). In total, the encoding task lasted 22 min.

After encoding, several structural scans were conducted (see below).
Then, subjects had a break outside the scanner in which the surprise rec-
ognition test was explained to them before going back into the scanner
to perform the recognition test. The duration between the encoding and
recognition tasks was ~30 min. The recognition test consisted of three
face and three house blocks presented in alternated and counterbalanced
order. Each block contained 20 previously seen and 20 new images.
Subjects were instructed to indicate whether a presented image was old
or new via button press during stimulus presentation (1200 ms) or the
following gray screen (3000 ms). The order of the trials was pseudo-
randomized with the restriction that images of the same subcategory or
four old or new images did not appear successively. Furthermore, trials
were separated by a jittered fixation cross (500-8000 ms). Again, because
of a technical issue, an identical stimulus order was used for 13 partici-
pants starting with a face block and for 14 participants beginning with a
house block. The recognition task lasted ~26 min.

Behavioral data analyses

Behavioral data were analyzed using custom-written MATLAB scripts.
For key resources please see Table 1. Performance in the target detection
task during encoding was measured as percentage of correct responses
to targets. Memory performance in the recognition task was assessed by
calculating the discrimination index Pr (Snodgrass and Corwin, 1988),
which is an unbiased parameter for recognition performance. Pr was cal-
culated as the difference between the hit rate (proportion of old
responses to old images) and the false alarm rate (proportion of old
responses to new images). We used ¢ tests to probe whether recognition
performance was different from chance level, and whether memory per-
formance differed for face and house images. Age differences in memory
performance were assessed by computing an independent-samples ¢ test
between younger and older adults. For effect sizes, we report Cohen’s d.

fMRI data collection and preprocessing

All MR images were acquired with a 3T Siemens Magnetom Tim Trio
scanner. MRI data acquisition included a T1-weighted structural image
(MP-RAGE sequence: TR=2.5ms, TE=4.77, flip angle=7°, TI=1.1
ms, voxel size =1 x 1 x 1 mm°®) and T2:#-weighted EPI (TR=2s, TE=
30ms, pixel size=3 x 3 mm?) sensitive to BOLD contrast. EPIs were
acquired in two separated encoding and retrieval sessions, which each
comprised 270 volumes with 36 axial slices of 3 mm thickness, separated
by 3.3 mm. As part of the larger study context, we additionally acquired
turbo spin-echo proton density images, diffusion tensor images, and
fluid attenuation inversion recovery.

MRI data were first organized according to “Brain Imaging Data
Structure” specifications (Gorgolewski et al., 2016). Data processing was
performed using the FMRIPrep toolbox (1.4.0) (Esteban et al, 2019)
with the default processing steps incorporating the software packages:
FSL, FreeSurfer, ANTSs, and AFNL First, each T1-weighted volume was
corrected for intensity nonuniformity and skull-stripped to reconstruct
brain surfaces. Brain-extracted T1-weighted images were spatially nor-
malized to the ICBM 152 Nonlinear Asymmetrical template version
2009c¢ through nonlinear registration. Brain tissue segmentation of CSF,
white matter, and gray matter was performed on the brain-extracted T1-
weighted image. Functional data were slice time-corrected, motion-cor-
rected and coregistered to the normalized T1-weighted template (for fur-
ther details, including software packages for each preprocessing step in
FMRIPrep, see the online documentation under https://fmriprep.org/en/
stable/).

For univariate analyses, functional images were resampled to 4 mm
isotropic voxels and spatially smoothed with a kernel of 4 mm FWHM.
We computed a voxelwise GLM, including the first and second encoding
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run using SPM12. BOLD signal changes were modeled using separate
regressors for face, house, and phase-scrambled control image blocks
and 6 nuisance motion regressors, which were all convolved with a ca-
nonical HRF.

Pattern similarity analyses were conducted on functional images
resampled to 2 mm isotropic voxels to enhance signal-to-noise ratio
(Dimsdale-Zucker and Ranganath, 2018) and were based on single trial
B weights, including one trial-specific regressor, one regressor for all
other trials, six motion regressors, and one run specific mean (Mumford
et al,, 2012). Trial specific regressors were modeled as a 1.2 s duration
boxcar function convolved with a canonical HRF.

Defining ROIs

We used a cluster-based approach to define individual functional ROIs
most strongly engaged by processing faces or houses during both encod-
ing runs. To restrict our analyses to category-selective processing areas,
we defined an anatomic mask of the VVC using the automated anatomic
labeling atlas, including bilateral fusiform gyrus, parahippocampal gyrus,
and the inferior temporal gyrus (D. C. Park et al., 2004). Within this
mask, we then contrasted BOLD responses to face versus phase-
scrambled control image blocks and BOLD responses to house versus
phase-scrambled control image blocks for each subject. All adjacent vox-
els exceeding the uncorrected threshold of p < 0.005 were defined as one
cluster. As mentioned above, 2 young and 4 older participants were
excluded because clusters included <10 voxels. The face-selective ROI
was defined as the cluster with the highest averaged t value for faces
compared with phase-scrambled images and the house-selective ROI as
the cluster with the highest averaged t value for houses compared with
phase-scrambled images leading to the formation of two individual func-
tional ROIs. We defined no cutoff of cluster size across subjects. The av-
erage number of voxels in the face- and house-selective clusters did not
differ between young and older adults (face-selective ROIs: Mjyg =
78.8; Mowa = 82.3; t(65) = —0.24 p=0.810; house-selective ROIs: Myoung =
70.7; Moa = 85.2; tss) = —1.11 p=0.273). Within participants, on aver-
age only 4.15% (fusiform gyrus: 4.74%; parahippocampal gyrus: 1.64%;
inferior temporal gyrus: 2.40%) of all voxels of the face- and house-selec-
tive ROIs overlapped, underlining separated category-selective clusters
in the VVC.

ROI analysis of category-selective processing

To estimate the fMRI response magnitudes evoked by face and house
images within each individual ROI, we first contrasted the BOLD signal
elicited by face and house image blocks against the BOLD signal of
phase-scrambled control image blocks within the first encoding run.
Then, we averaged all ¢ values within each ROI to obtain a standardized
response value to faces or houses, respectively. Category selectivity scores
were computed by contrasting standardized BOLD responses to the pre-
ferred versus nonpreferred image category within each individual ROI,
for example, BOLD response to faces versus BOLD response to houses
in the face-selective ROL. To analyze selectivity scores on group level, we
used a 2 (Age Group) x 2 (ROI) mixed factorial ANOVA.

Category selectivity scores were collapsed across ROIs to calculate
mean selectivity scores within each participant. This category selectivity
score index was correlated with Pr across all participants using Pearson
correlation. Furthermore, we conducted partial correlations between cat-
egory selectivity scores and Pr with age group as control variable to test
whether this relationship is independent of age.

ROI analysis of category representation specificity

To estimate the specificity of neural category representations within cat-
egory-selective clusters, we compared the within-category similarity to
the between-category similarity within the first run using pattern simi-
larity analysis (Kriegeskorte et al., 2008) (see Fig. 1C). Similarity indices
were based on Fisher z-transformed Pearson correlations between sin-
gle-trial B weights calculated across voxels. Within- and between-cate-
gory similarity was calculated separately in both ROIs. Within-category
similarity was only calculated for items from the preferred category of
the selected area (Koen et al,, 2019) and was only computed for items
from different blocks to control for potential confounds because of time-
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Table 1. Key resources

Resource Source Identifier

Software and algorithms

FieldTrip Toolbox http://www.FieldTriptoolbox.org RRID:SCR_004849
MATLAB 2020a http://www.mathworks.com RRID:SCR_001622
Psychtoolbox http://psychtoolbox.org RRID:SCR_002881
SPM12 https://www.fil.ion.ucl.ac.uk/spm RRID:SCR_007037
FMRIPrep http://fmriprep.readthedocs.io RRID:SCR_016216

dependent correlations in hemodynamic responses (Dimsdale-Zucker
and Ranganath, 2018). For each item, the within-category similarity
was computed as the average across-voxel Pearson correlation of
the BOLD activity pattern of such item to all other items from the
same preferred category in a category-selective area (e.g., similar-
ity of a face trial to all other face trials in the face area). For each
subject, we averaged within-category similarity across items,
resulting in one within-category similarity value for each ROIL
The between-category similarity of each item was calculated as the
across-voxel Pearson correlation of the BOLD activity pattern of
the item to the BOLD activity pattern of all items from the other cat-
egory (e.g., similarity of a face trial to all house trials in the face
area). We again averaged between-category similarity across items
to estimate one between-category similarity value for each ROIL To
test for differences in pattern similarity values, we used a 2 (Age
Group) x 2 (within/between-category similarity) x 2 (ROI) mixed
factorial ANOVA. To link category specificity and memory per-
formance, we collapsed category specificity across ROIs and calcu-
lated zero-order and partial Pearson correlations between category
specificity and Pr controlled for age.

Searchlight analyses of category representation specificity

We conducted separated searchlight analyses for faces and houses. For
each voxel in the brain, we compiled the difference of within- and
between-category similarity (i.e., category specificity) within an 8-mm-
radius sphere centered on that voxel using modified scripts of the
MATLAB Toolbox for representational similarity analysis (Nili et al.,
2014). Within- and between-category similarity was calculated as
described in the previous section. Thus, we derived a whole-brain map
for each subject where each value indicated the category specificity of the
according sphere.

We used nonparametric, cluster-based, random permutation statis-
tics adapted from the FieldTrip toolbox (Oostenveld et al,, 2011) to test
for age differences in category specificity across the brain. First, inde-
pendent ¢ tests were conducted comparing category specificity of young
and older adults for each voxel. Adjacent voxels exceeding the defined
threshold of p < 0.005 were grouped into clusters. The sum of all t values
of these empirical clusters was determined as the respective test statistic.
We used the Monte Carlo method to compute a reference distribution
for the summed cluster t values. Category specificity of both age groups
was randomly assigned (1000 permutations) into two new category spec-
ificity sets. In every permutation, an independent f test was conducted
between the newly generated random sets within each cluster. The sum
of these ¢ values during each permutation was included in the estimation
of the reference distribution of a cluster.

Searchlight analyses of item representation specificity

To investigate the specificity of item representations, we compared
within-item similarity to between-item similarity (i.e., item specificity)
using pattern similarity searchlight analysis (see Fig. 1C). Matching the
category specificity searchlight analysis, we compiled the within- minus
between-item similarity for each voxel within an 8-mm-radius sphere.
For each item, within-item similarity was calculated as the across-voxel
Pearson correlation of the BOLD activity pattern of a given item from
the first encoding run to the BOLD activity pattern of the same item
from the second encoding run in each sphere. Between-item similarity
was computed as the correlation of the BOLD activity pattern of an item
of the first encoding run to the BOLD activity pattern of all other items
from the same category of the second encoding run. For each
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participant, we then averaged within- and between-item similarity across
items. We used the resulting within- and between-item similarity brain
maps of each participant to calculate one item specificity brain map for
each subject. To test for age differences in item specificity across the
brain, we used nonparametric, cluster-based, random permutation sta-
tistics (see Searchlight analysis of category representation specificity).
First-level statistics compared item specificity of young and older adults
for each voxel. Second-level statistics compared the summed ¢ value of
the empirical clusters to a reference distribution computed using the
Monte Carlo procedure.

Furthermore, we averaged item specificity for faces and houses for
each participant to estimate one item specificity score per participant.
Respective item specificity scores were correlated with Pr across partici-
pants using Pearson correlations and partial correlations to control for
age group differences.

All age comparisons of neural selectivity (see above) and specificity
are based on within-person differences (e.g., the difference between
responses to preferred and nonpreferred image categories), which
reduces the impact of potential confounding factors in the neurovascular
system as opposed to comparing absolute measures, such as absolute
BOLD activation between age groups (compare Rugg and Morcom,
2005). Crucially, the interaction with memory performance supports the
interpretation that the identified age differences are indeed related to
neurocognitive functions and not merely confounded by unspecific neu-
rovascular differences.

Analyzing the relationship between differentiation on multiple represen-
tational levels and memory performance using linear mixed models
(LMMs)

We used LMM to examine the contribution of our distinctiveness
measures (category selectivity [Csel], category specificity [Cspec],
and item specificity [Ispec]) to memory success (Pr). In order to
remove main effect differences between the groups, we standardized
(with a mean of zero and unit SD) all variables within the respective
age group. In order to test whether any association between the dis-
tinctiveness measures and memory success were dependent on age
group membership, we also tested for the respective interactions. In
addition, we allowed for a random intercept for each participant
(ID). In sum, using the fitglme function in MATLAB, we fit the fol-
lowing random intercept model (in Wilkinson notation, compare
Wilkinson and Rogers, 1973):

Pr~1+ Csel + Cspec + Ispec + Csel : agegroup + Cspec
: agegroup + Ispec : agegroup+(1|ID)

Disentangling the effects of age and memory performance on item
specificity

We aimed to disentangle whether lower item representation specificity
in older adults occurred because of lower item stability or higher
between-item similarity in older adults compared with younger adults
and which of these two factors was related to memory performance.
Therefore, we averaged within- and between-item similarity for later
remembered and forgotten items separately in the significant face and
house clusters of the conducted searchlight analyses. To test for differen-
ces in item similarity, we conducted a 2 (Age Group) x 2 (within-item/
within-category similarity) x 2 (Memory: remembered/forgotten) x 2
(ROI) mixed factorial ANOVA.

Furthermore, we examined item stability at the trial level by
computing a generalized LMM (GLM) with binary memory
response outcome (hit or miss) as dependent variable, trialwise
item stability, that is, within-item similarity (WI), between-item
similarity (BI), age group, the respective interactions with age
group, and the individual response bias (Br) calculated as false
alarm rate/(1 - Pr) (Corwin, 1994) as fixed effects, and subject ID
as random effect (intercept). We used a binomial distribution with
a logistic link function using restricted maximum likelihood esti-
mation to fit the data as follows:


http://www.FieldTriptoolbox.org
https://scicrunch.org/resolver/SCR_004849
http://www.mathworks.com
https://scicrunch.org/resolver/SCR_001622
http://psychtoolbox.org
https://scicrunch.org/resolver/SCR_002881
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memory response ~ 1 + WI+BI + agegroup + Br

+ WI : agegroup + BI : agegroup + (1|ID)

Resource availability
Data and code for all analyses of this manuscript are publicly available
on osf: https://osf.io/t8dpv/.

Results

Behavioral results

Healthy young adults (n =35, age: mean=22.11 years, SD=2.70
years, range = 18-27years) and older adults (n=32, age:
mean =70.72 years, SD=2.26 years, range = 67-75years) inci-
dentally encoded images of faces and houses, followed by a sur-
prise recognition test (Fig. 1A). To ensure adequate processing of
the presented face and house images, participants performed a
low-level vigilance task during encoding (i.e., pressing a button
whenever an interspersed predefined target image appeared).
Both younger and older participants performed near ceiling in
the vigilance task (percentage of correct answers: M.,y =
98.95%, SDyoung = 4.69% Moiq = 98.77%, SDy1q = 3.54%), reflect-
ing high engagement with the encoding task. Memory perform-
ance in the recognition task was assessed by the discrimination
index Pr calculated as the difference between the hit rate and
false alarm rate, which can range from -1 to 1 with 0 represent-
ing chance level. In both age groups, the mean memory perform-
ance exceeded chance level (Pryoung = 0.24, tyoung(34) =12.18,
pyoung < 0.001, dyoung = 2.06, Pryq = 0.19, told(31) =9.16, Doid <
0.001, dyq = 1.62) and did not differ between face and house
images (faces: Pryoung = 0.23, houses: Pryungs = 025,
tyoung(35) =0.93, pyoung = 0.358, faces: Prog = 0.17, houses:
Proa = 0.21, t414(31) = 1.67, poia = 0.105). Older adults gave more
“old” responses for both previously learned (hit ratey,,,,s = 0.50,
hit rate,;; = 0.61, t5) = —3.08, p=0.003, d=0.75) and com-
pletely new images compared with younger adults (false
alarm ratey,o, e = 0.26; false alarm rate,;y = 0.41; t(s5) = -4.92,
p<<0.001, d=1.34). An independent-samples ¢ test revealed
no significant difference in memory performance (Pr)
between age groups (t(s)=1.62, p=0.110, d = 0.40).

Category-selective processing in the VVC differs between age
groups and is related to memory performance
Age-related neural dedifferentiation has previously been
described as less distinct recruitment of category-selective areas
located in the VVC (D. C. Park et al.,, 2004). Within category-
selective functional ROIs (Fig. 2), we calculated a category selec-
tivity score as the difference in BOLD responses to images of the
preferred versus the nonpreferred category (e.g., the difference in
BOLD responses to images of faces versus houses in the face-
selective ROI). A 2 (Age Group) x 2 (ROI) mixed factorial
ANOVA revealed that older adults showed reduced category-
selective processing compared with young adults (F(; 6s) = 12.59,
p <0.001; Fig. 3A). Furthermore, the magnitude of the selectivity
score did not differ between ROIs (F; g5 =0.22, p=0.643), and
there was no interaction between ROI and age (F 65 =0.06,
p=0.813). Thus, replicating previous observations (D. C. Park et
al., 2004; Koen et al,, 2019), our findings emphasize that older
adults engage category-selective areas in the VVC less distinc-
tively compared with younger adults when encoding visual
information.

If neural dedifferentiation occurred because of age-related
increases of haphazard neural activation as claimed by S. C. Li et
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Figure 2. Identification of category-selective clusters in VVC. Surface rendered illustration
of nonoverlapping category-selective ROIs across all participants. Yellow represents face-
selective ROI. Cyan represents house-selective ROI. Notably, the face-selective ROl is predomi-
nantly located in the lateral VVC and the house-selective ROl in the medial VVC closely
resembling the category-selective areas observed by J. Park et al. (2012).

al. (2001), lower category selectivity should result from increased
neural noise reflected in increased responses to images of the
nonpreferred category in older adults (i.e., neural broadening) (J.
Park et al., 2012). However, the current evidence is fairly mixed
as there are studies supporting neural broadening and studies
showing the opposite effect: reduced responses to images of the
preferred category (i.e., neural attenuation; for review, see Koen
and Rugg, 2019). To unravel whether age-related reductions in
category-selective processing occurred because of (1) neural
broadening, (2) neural attenuation, or (3) a mixture of both
processes (see J. Park et al., 2012), we conducted post hoc t tests
and used Bonferroni correction to control for multiple compari-
sons (Fig. 3B). Across ROIs, older adults showed increased
BOLD responses to images of the nonpreferred category com-
pared with younger adults (#5) = 2.38, p = 0.040), whereas BOLD
responses to preferred images did not differ between age groups
(t6s) = -1.13, p=0.526). Hence, the observed age-related neural
dedifferentiation in category processing most likely resulted
from an increased engagement of category-specific regions by
nonpreferred stimuli in line with the theoretical assumption that
broadening effects of the neural tuning curve underlie the loss of
neural distinctiveness in older adults (S. C. Li et al., 2001).

To test whether interindividual variability in category-selec-
tive processing was related to memory performance in the recog-
nition task, zero-order and partial correlations were computed
across participants using Pearson’s . Selectivity scores were aver-
aged across face- and house-selective ROIs in the VVC. Across
participants, selectivity scores were related to memory perform-
ance (r=0.34, p=0.005; Fig. 3C). Importantly, this correlation
remained significant when controlling for age group using partial
correlations (r=0.29, p=0.019). Thus, dedifferentiated visual
processing in category-selective areas, as primarily observed in
older adults, was related to poorer memory performance inde-
pendent of age.

Age differences in category representation specificity are
restricted to the VVC

Since category selectivity as assessed with univariate methods
relies on averaged BOLD signal changes and does not allow to
quantify the distinctiveness of specific item representations, we
next used pattern similarity analysis (Kriegeskorte et al., 2008) to
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Figure 3.  Age differences in category-selective processing. A, Selectivity score for younger adults (blue; circles) and older
adults (red; triangles). Group distributions shown as unmirrored violin plot and boxplots with medians and 95% Cl with
whiskers representing second and 98th percentiles (Allen et al., 2019). B, BOLD response to preferred and nonpreferred cate-
gories within functionally defined VVC ROIs. The BOLD response is expressed as the averaged t values for preferred/nonpre-
ferred categories against phase-scrambled images within the respective ROIs. Error bars indicate SEM. €, Scatterplot
illustrating partial correlation between selectivity scores and corrected recognition (Pr) controlling for age. Each circle/triangle
represents an individual younger/older adult. For illustrative purposes, the best-fitting least-squares line is plotted.
+Significant group differences (p << 0.05).
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Figure 4. (ategory representation specificity in the VVC. A, Category specificity calculated as the difference between
within- and between-category similarity for younger adults (blue; circles) and older adults (red; triangles). Group distributions
as unmirrored violin plot and boxplots with medians and 95% ClI with whiskers representing second and 98th percentiles. B,
Partial Pearson correlation of category specificity and corrected recognition (Pr) controlling for age. For illustrative purposes,
the best-fitting least-squares line is plotted. *Significant group differences (p << 0.05).

investigate the categorical specificity of item representations.
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within-category similarity and between-
category similarity following an approach
widely used in previous studies (Carp et
al,, 2011; Koen et al., 2019; Trelle et al.,
2019).

A 2 (Age Group) x 2 (within vs between-
category similarity) x 2 (ROI) mixed facto-
rial ANOVA revealed that within-category
similarity was higher than between-category
similarity across age groups (F 65 = 146.70,
p << 0.001; Fig. 4A). Moreover, the difference
between within- and between-category simi-
larity differed by Age Group (Fy6s)=4.85,
p=0.031), indicating lower category specific-
ity in older than younger adults. Neither the
main effects of age (F(¢5)=2.07, p=0.155)
or ROI (F; ¢5=0.05, p=0.820) nor any fur-
ther interactions reached significance (p
values > 0.268).

In contrast to most previous studies,
which restricted their analyses on cate-
gory-selective areas in the VVC, we used
a searchlight approach to explore age
differences in category specificity across
the whole brain (Nili et al., 2014). In
contrast to the ROI analysis, whole-
brain analyses revealed no group differ-
ences in category specificity for houses
(p>0.336) and furthermore indicated
that older adults showed higher category
specificity for faces in the superior tem-
poral gyrus (p=0.006). Thus, while the
ROI-based multivariate approach pro-
vided evidence supporting age differen-
ces in category specificity as reported by
several previous studies (Carp et al,
2011; Koen et al, 2019; Trelle et al,
2019), the whole-brain approach did
not. This result indicates that an age-
related decline for category information
may be restricted to category-specific
brain regions and less pronounced than
thought, such that it does not survive ex-
ploratory whole-brain analyses.

We also tested whether interindividual
differences in the specificity of neural cate-
gory representations in category-specific
brain regions were related to memory
performance across participants (Fig. 4B).
Specificity of neural category representa-
tions was calculated as the difference of
within- and between-category similarity
averaged over face- and house-selective
areas. Neural category representation
specificity was not related to memory
performance using zero-order (r=0.03,
p=0.834) or partial Pearson correlations
controlling for age (r = —0.03, p=0.829).
Thus, we found no evidence that the spec-

This analysis still focuses on differences on the categorical level ificity of neural category representations was related to memory

but uses item-level information instead of averaged activation  performance.

differences. Thus, we defined the specificity of neural category In addition to categories and individual items (see below),
representations (category specificity) as the difference of  the presented stimuli can be subdivided into subcategories (e.g.,
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young female faces, warehouses). We did
not identify any significant associations
between representational subcategory
specificity and memory or age (but see
Kuhl and Chun, 2014; Trelle et al., 2019).

Item representation specificity in

occipital regions is reduced in older

adults and linked to memory

performance

In contrast to previous studies (Carp et al,

2011; Koen et al., 2019), our results only par-

tially support lower category specificity in
older adults (i.e., when restricting the analy-  C
ses to category-specific ROIs). However, the-
oretical accounts based on computational
models emphasize that age-related dediffer-
entiation is particularly reflected in reduced
specificity of neural representations of indi-
vidual items (S. C. Li et al.,, 2001), which are

not restricted to category-selective areas but

are found in large-scale neural networks

(Xue, 2018). Therefore, we applied pattern O,
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similarity analyses across the whole brain to 0.2
investigate age-related changes in neural
item specificity. Figure 5

Within each sphere, within-item simi-
larity was calculated as the similarity of
BOLD activity patterns across the two rep-
etitions of a given item (i.e., item stability;
Fig. 1C). We compared this item stability
with the respective within-category simi-
larity to capture the specificity of neural
item representations (i.e., item specificity).
For faces, older adults showed smaller item specificity compared
with younger adults in occipital regions (p < 0.001), including
bilateral intracalcarine cortex, lateral occipital cortex, and occipi-
tal fusiform cortex (Fig. 5A). For houses, older adults also
showed smaller item specificity than younger adults in occipital
areas (p = 0.006) comprising bilateral lingual gyrus, intracalcarine
cortex, and left occipital fusiform cortex (Fig. 5B). Thus, our
findings underline that older adults form less specific item repre-
sentations in occipital areas than younger adults.

We also tested whether interindividual differences in item
specificity were related to overall memory performance (Fig. 5C).
For this analysis, we averaged item specificity over both categories
in their respective occipital clusters. Neural item representation
specificity was related to memory performance using zero-order
(r=0.39, p=0.001) and partial Pearson correlations controlling
for age (r=0.35, p=0.004). Equivalently, item stability alone
showed the same between-person association with performance
(zero-order: r=0.42, p < 0.001; partial: r=0.38, p =0.002).

Thus, high item representation specificity/stability accounts
for interindividual differences in memory performance of
younger and older adults.

Linking neural dedifferentiation across representational
levels in relation to memory performance

Given the coexistence of age differences in category selectivity, cat-
egory specificity, and item specificity and their differential associa-
tions with recognition performance, we used LMMs to examine
their contribution to memory success and the interaction with
age. We observed a significant association between memory

-0.1 0 0.1 0.2 0.3 0.4

Pr (residuals)

Age differences in item representation specificity and relation to memory performance. 4, Significant age differ-
ences in item specificity, calculated as the difference between similarity of BOLD activity patterns across the two repetitions
of a given item (i.e., item stability) and the respective within-category similarity, for faces indicated by t values. Younger
adults showed higher item speificity in occipital areas compared with older adults as depicted by the presented cluster. B,
Significant age differences in item specificity for houses. Again, younger adults showed higher item specificity in occipital
areas than older adults. C, Partial Pearson correlation of item specificity and corrected recognition (Pr) controlling for age
(blue circles represent younger adults; red triangles represent older adults).

success and item specificity (main effect: #4p)=2.31; p=0.024).
Neither the main effect of category selectivity (¢o) = 1.45; p =0.15)
nor the main effect of category specificity (to) = —1; p=0.32)
reached significance. Crucially, none of the interaction effects
reached significance (all [¢| < 0.95; all p > 0.34), providing no evi-
dence for differential associations between measures of distinctive-
ness and memory success across age groups.

To further investigate the association between distinctiveness
at different representational levels, we correlated all measures with
each other. All neural distinctiveness measures were related to
each other across participants (Table 2). However, the correlations
between item and category measures appear to be mostly driven
by overall age differences: When controlling for age using partial
correlations, only the relationship between category selectivity and
category specificity remained significant (r=0.37, p=0.003),
whereas partial correlations of item specificity to category selectiv-
ity (r=0.14, p=0.276) and category specificity (r=0.17, p=0.176)
were not significant. These results underline previous theoretical
distinctions between distinctiveness measures on category and
item level (Koen and Rugg, 2019; Koen et al., 2020) and further-
more emphasize the close relationship between both dedifferentia-
tion measures on category level (Koen et al., 2019).

Age and performance differences in occipital item specificity
are driven by item stability

Our LMM analysis revealed that differences in item specificity
account for interindividual differences in memory performance
over and above the variance explained by all variables combined.
Importantly, if, as assumed by S. C. Li et al. (2001), more variable
neural responses are at the core of age-related reductions in
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Table 2. Association between distinctiveness measures and memory performance (zero-order Pearson correlations r, with p in parentheses)

(1) @) 3) ) ()
(1) Memory performance — — — — —
(2) Category selectivity 0.34 (0.005) — — — —
(3) Category specificity 0.03 (0.834) 0.43 (<<0.001) — — —
(4) Item specificity 0.39 (0.001) 0.35 (0.003) 0.29 (0.016) — —
(5) Item stability 0.42 (<<0.001) 0.36 (0.002) 0.34 (0.005) 0.99 (<<0.001) —
(6) Age group —0.20 (0.110) —0.40 (<€0.001) —0.26 (0.031) —0.64 (<0.001) —0.63 (<0.001)

neural specificity, item specificity in older adults depends crit-
ically on the consistency with which individual items are rep-
resented across several instances of encoding (i.e., item
stability). To test whether lower item specificity in older adults
was indeed because of lower item stability (within-item simi-
larity) or higher between-item (within-category) similarity,
compared with younger adults and whether specifically higher
item stability was related to a higher probability of successful
memory retrieval, we compared similarity indices in the
observed occipital clusters with a 2 (Age Group) x 2 (within-
vs between-item similarity) X2 (Memory: remembered/
forgotten) x 2 (ROI) mixed factorial ANOVA.

Younger adults showed higher similarity scores compared
with older adults (F; 65y = 22.25; p < 0.001) and within-item sim-
ilarity was generally higher than between-item similarity
(F(1,65)=435.87; p < 0.001). In line with the searchlight analysis,
the difference between within-item similarity and between-item
similarity (ie., item specificity) was smaller in older than in
younger adults as indicated by a significant interaction of age
and within- vs between-item similarity (F(; ¢5)=25.05; p < 0.001;
Fig. 6A). Post hoc tests revealed that within-item similarity
(e, item stability) (f6s =4.94, p<0.001) was lower in older
adults compared with younger adults, whereas between-item
similarity (fs=2.16, p=0.069) did not differ between age
groups after multiple error correction. Within- and between-
item similarity differences were not different across ROIs
(Fli5) = 3.53; p=0.064).

Most crucially, subsequently remembered items showed
higher similarity scores compared with subsequently forgot-
ten items (F(; 65 =7.85, p=0.007), which interacted with
within- vs between-item similarity (F(; 65 =17.51; p <0.001;
Fig. 6B). Post hoc t tests revealed that within-item similarity
(i.e., item stability) was higher for subsequently remembered
than forgotten items (f(s6) = 3.90, p <0.001), while there was
no difference in between-item similarity (tgs = -1.17,
p=0.248). We found no interaction between memory and
age group (F(1 65 =3.90; p =0.052) or other significant effects
(p values > 0.316).

In addition to the ANOVA computed above, which contrasts
the average representational similarities of later remembered and
forgotten stimuli and identifies a critical role of item stability, we
also ran a generalized LMM (GLM) to examine trialwise variabil-
ity in item stability and how it predicts memory outcome (Fig.
6C). We tested whether binary memory response outcome (hit
or miss) could be predicted by trialwise item stability, that is,
within-item similarity (WI), between-item similarity (BI), age
group, the respective interactions with age group, and the indi-
vidual response bias (Br). In line with the previously applied
mixed factorial ANOVA (see above), we found that trialwise
item stability predicted memory outcome (log odds=0.12, 95%
CI [0.06, 0.18]) in that trials showing larger item stability during
encoding had a higher probability to be correctly recognized later
on. Furthermore, there was a significant effect of response bias

(log odds=3.50, 95% CI [2.94, 4.05]) showing that participants
with a bias to respond “old” showed more hits compared with
misses. In contrast, neither between-item pattern similarity, age
group, nor any of the interactions reached significance (Table 3).

Thus, item stability was lower in older than in younger adults
and supported subsequent recognition performance on a trial-
wise level emphasizing the role of less stable item representations
for age-related memory decline.

Discussion

The present fMRI study investigated age differences in the dis-
tinctiveness of neural information representations supporting
episodic memory performance. We provided a comprehensive
account of age differences at different representational levels
ranging from category selectivity to item specificity and item sta-
bility and delineated their contribution to memory performance
in younger and older adults. Combining conventional ROI-based
univariate analysis and whole-brain multivariate pattern similar-
ity analysis, we demonstrated that age differences in neural dis-
tinctiveness coexist at various representational levels, and take
the form of reduced category-selective processing in VVC
regions, and reduced specificity of item representations in occipi-
tal areas. The study revealed the contribution of both categorical
distinctiveness and item specificity to memory performance,
with item specificity being the strongest contributor to it. Age
differences in occipital item specificity were largely due to
reduced item stability across repetitions in older adults, and
higher item stability was related to subsequent memory success.
Whether or not age differences exist at the item level was a mat-
ter of debate that could so far not be settled because of limited
evidence (Koen and Rugg, 2019). Our results close this gap in the
literature by demonstrating that older adults’ neural representa-
tion of item-specific information in addition to categorical infor-
mation is indeed reduced compared with younger adults.

Age-related neural dedifferentiation coexists at different
representational levels

Previous fMRI studies investigating neural dedifferentiation
focused on broader concept representations by assessing univari-
ate category-selective processing (e.g., D. C. Park et al,, 2004)
and/or multivariate category-specific representations (e.g., Carp
et al., 2011), mainly in regions of the VVC. In the current study,
ROI-based analyses within category-specific ROIs replicated pre-
vious findings: Univariate analyses revealed age-related neural
dedifferentiation in terms of reduced category-selective process-
ing (e.g., D. C. Park et al., 2004), and multivariate pattern simi-
larity analyses revealed reduced categorical specificity (e.g., Carp
et al,, 2011; Koen et al.,, 2019) in older compared with younger
adults. As predicted by computational models (S. C. Li et al,
2000, 2001; S. C. Li and Sikstrom, 2002), age differences in neural
category differentiation resulted from neural broadening, that is,
increased activation to nonpreferred stimuli in the older adults,
with no age differences in activation differences for preferred
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[tem representation specificity and memory performance. 4, Within-item and between-item similarity in both age groups indicates that lower item speificity in older adults is

mostly driven by lower item stability. B, Comparing within- and between-item similarity for subsequently remembered items (hits) and not-remembered items (misses) across age groups
shows that item stability was higher for later remembered than not-remembered items independent of age. C, Trialwise item stability is linked to an increased probability of correct memories.
For visualization, memory outcome was binned into quintiles according to trialwise item stability in each subject. Within each age group, the proportion of correct memories was averaged

across participants. Error bars indicate SEM. *Significant group differences (p << 0.001).

Table 3. Results for GLM: memory response ~ 1+ WI + Bl + agegroup +
Br + Wl:agegroup + Bl:agegroup + (1]ID)

Fixed effects predictors Log odds ¢ p 95% Cl lower 95% Cl upper
[tem stability (WI) 0.12 3.74 <0.001  0.06 0.18
Between-item similarity (BI) —0.02  —0.66  0.508 —0.08 0.04
Response bias (Br) 3.50 1239 <0.001 294 4.05
Age group —0.14  —149 0136 —031 0.04
WI x age group —0.001 —0.03 0975 —0.09 0.09
Bl x age group —0.03 —071 0474 —0.13 0.06

stimuli. More importantly, applying a whole-brain searchlight
approach to target specificity of neural representations on the
item level, we found clear evidence for age differences in item-
specific BOLD activation patterns in occipital regions.

Previous studies with young adults have established that
reduced item specificity results in poor memory performance
(Xue et al., 2010; Hasinski and Sederberg, 2016), but a predefined
focus on category-specific regions in VVC (e.g., Koen et al,
2019) may have prevented previous age-comparative studies to
reveal age differences in item-level specificity and delineate their
role in cognitive decline. The current study demonstrates that
age differences in item specificity are most prominent in occipital
regions (including lateral occipital cortex and occipital face area
for faces; Fig. 5), that are involved in early visual processing.
Together with the fusiform gyrus, lateral occipital cortex has
been shown to be critical for visual object (including face) per-
ception (Grill-Spector et al., 1999; Grill-Spector and Malach,
2004; Nagy et al., 2012). Furthermore, the occipital face area,
which is connected to the FFA and lateral occipital cortex, con-
stitutes the lowest level in the face perception network and is sug-
gested to represent and integrate facial components (Pitcher et
al., 2007, 2011; Kadosh et al., 2011; Nagy et al., 2012). Thus, less
precise item-specific activation patterns in older adults in these
regions are likely to reflect differences in early processing of the
incoming visual information, which results in detrimental conse-
quences for downstream (category-level) processing. In sum, we
argue that our results are in line with core assumptions of com-
putational models (e.g., S. C. Li et al, 2001), namely, that
increased neural variability with age manifests as both degraded

item representations in early visual regions and, as a downstream
effect, reduced category selectivity in VVC. Hence, we emphasize
the important role of item-specific and stable neural representa-
tions for memory functioning.

Here, we only investigated cortical representations, but these
may depend on pattern separation in the hippocampus, which is
known to decline in aging (e.g., Reagh et al,, 2018). Future
research should study the interdependence of hippocampal and
cortical representations and their joint association to memory
performance during aging (compare Danker et al., 2017).

In contrast to previous studies (e.g, Koen et al., 2019;
Srokova et al.,, 2020), we did not observe differences in age-
related neural dedifferentiation based on stimulus materials.
However, the limited variety of different stimulus categories in
our study does not allow to make strong claims for or against the
proposition that neural dedifferentiation is ubiquitous in the
aging brain. Differences between stimulus categories should thus
be examined in a systematic investigation in the future, including
a broad range of different stimulus categories and other factors,
such as task demands.

Interindividual and intraindividual differences in neural
distinctiveness are related to memory performance

Next, using LMM, we explored the unique effects of interindivid-
ual differences in three measures capturing neural dedifferentia-
tion at distinct representational levels (category selectivity,
category specificity, and item specificity) on memory perform-
ance. Importantly, of the neural dedifferentiation measures, item
specificity showed the strongest association with memory, over
and above the shared effects of the distinctiveness measures
across all representational levels combined. Since the recognition
memory task used in the current study required participants to
distinguish between highly similar face and house exemplars,
rather than simply discriminating faces from houses, high item
specificity was required to perform well. Category selectivity
instead may rather be a general indicator of representational
quality and a potential downstream effect of item-specific per-
ceptual representations. However, when tested by itself, category
selectivity was also shown to be related to memory performance
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across participants. The finding that category selectivity was
associated with recognition performance while category specific-
ity was not was also observed by Srokova et al. (2020). However,
in contrast to that, Koen et al. (2019) reported a link between rec-
ognition memory and both category selectivity and specificity.
These deviant results may result from methodological differen-
ces, including stimulus materials (see also above) and task
demands (incidental encoding vs intentional encoding). Overall,
while our results nicely illustrate the coexistence of age differen-
ces at different representational levels, they clearly identify item
specificity in early visual areas as the driving force for interindi-
vidual differences in memory performance.

Our results further revealed the importance of item specificity
for the mnemonic fate of single items, that is, subsequent mem-
ory effects at the within-person level. In line with others, we
defined item specificity as the comparison of activation patterns
across stimulus repetitions in relation to their similarity to differ-
ent stimuli of the same category (compare Hasinski and
Sederberg, 2016; Zheng et al., 2018; Koen and Rugg, 2019). In
that way, item specificity is a joint effect of representational sta-
bility and representational distinctiveness. Thus, theoretically,
reduced item specificity in old age may be because of decreased
item stability (Zheng et al., 2018), increased within-category sim-
ilarity (Goh et al, 2010), or both (compare Koen and Rugg,
2019). However, the computational model by S. C. Li et al. (2001)
suggests that item-level specificity in older adults is reduced
because of increased neural response variability, thus reduced item
stability. In line with this proposal, we observed that age differen-
ces in item specificity were because of a reduction in item stability
in the older age group, whereas no age differences were observed
for within-category similarity. Furthermore, item stability dis-
played an age-independent relation to memory, as indicated by a
positive association with recognition probability, also on the trial
level. Higher item stability in younger compared with older adults
in visual regions being related to subsequent memory effects has
also been reported by one previous age-comparative study (Zheng
et al,, 2018); however, the validity of that finding has been ques-
tioned (Koen and Rugg, 2019) because age differences in item
specificity were not reliable. Our results clearly align with these
prior results and highlight that item specificity and item stability
are key contributors to age differences in memory performance.

The finding of impoverished item representations in older
adults in early visual regions resonates with the long-standing sug-
gestion in cognitive aging science that sensory and cognitive func-
tions are increasingly linked to each other in the course of aging,
which further reinforces the close connection of age-related defi-
cits in perceptual processing and declining cognitive abilities
(Lindenberger and Baltes, 1994; Baltes and Lindenberger, 1997;
Schneider and Pichora-Fuller, 2000; K. Z. Li and Lindenberger,
2002). The current study substantiates this claim by identifying
reduced representational specificity coexisting at different repre-
sentational levels but most prominently in early visual regions,
which was furthermore linked to interindividual and intraindivid-
ual differences in memory performance.

Although the current study clearly identifies a relationship
between representational specificity and stability during encod-
ing with later memory performance, the older adults group, who
showed overall reduced specificity and stability, did not perform
overall significantly worse than the young adult group, similar to
findings by Koen et al. (2019). Less pronounced or no age-related
deficits in item recognition memory, compared with, for example,
associative memory, are not uncommon, especially under incidental
encoding conditions (compare Old and Naveh-Benjamin, 2008;
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Sommer et al, 2021). Nevertheless, older adults often tend to
respond “old” more frequently than younger adults, contributing to
their higher rates of false memories (Koutstaal and Schacter, 1997;
Schacter et al., 1997; Fandakova et al., 2013, 2020), which was also
observed in the present study. Nevertheless, the present study
clearly shows that differences in representational specificity and sta-
bility during encoding can account for differences in subsequent
memory performance between as well as within participants.

Neural dedifferentiation as a consequence of age-related
neurotransmitter changes?

In the current study, we proposed that age differences at various
representational levels coexist based on a computational model
(S. C. Lietal, 2000, 2001; S. C. Li and Sikstrém, 2002) that sug-
gests deficient neuromodulation as the causal mechanism for
reduced consistency of neural information processing with ensu-
ing consequences for representational distinctiveness and age-
related cognitive deficits. Of course, in the current study, the pre-
cise mechanism underlying the observed representational differ-
ences at the various levels remains speculative. Nevertheless,
evidence from other studies supports the proposal of age differen-
ces in neuromodulation as a driving factor for neural dedifferenti-
ation. While the original proposal emphasized age-related changes
in dopamine (compare Wong et al, 1984; S. C. Li et al, 2001;
Béckman et al., 2006, 2010; Abdulrahman et al., 2017; Rieckmann
et al.,, 2018), more recently, several studies have revealed the con-
tribution of age-related decline in GABA to cognition and neural
information representation (compare Leventhal et al., 2003). For
example, using MR spectroscopy to quantify GABA concentra-
tions in occipital voxels, Simmonite et al. (2019) found that lower
occipital GABA levels in older adults were associated with declines
in fluid processing abilities. Furthermore, Chamberlain et al.
(2021) reported that individual differences in the category specific-
ity of face versus house representations were linked to individual
differences in VVC GABA concentrations in older adults, indicat-
ing a role of GABA in age-related neural dedifferentiation (see
also Cassady et al., 2019; Gagnon et al,, 2019; Lalwani et al., 2019).
These findings substantiate the key role of proficient (particularly
GABAergic) neuromodulation for high-fidelity (ie., stable and
distinct) neural representations and cognitive performance and lay
the ground for future studies aiming to understand how age-
related deficits in neuromodulation are related to neural dediffer-
entiation across representational levels.

Conclusion

In conclusion, the present fMRI study set out to investigate age
differences in neural information representation and their rela-
tion to episodic memory performance. Previous studies have
focused on neural dedifferentiation of categorical information
but have neglected age differences at the item level. Our results
show that differences in representational distinctiveness coexist
at various levels and contribute to memory. Crucially, they
emphasize the striking relevance of item specificity and item sta-
bility for the understanding of interindividual and intraindivid-
ual differences in memory. Thus, the current study substantiates
the claim of a close connection between age differences across
processing levels (e.g., sensory and cognitive), as derived from
long-standing observations in behavioral aging research.
Longitudinal studies are needed to elucidate to what extent the
different levels depend on or precede each other and whether a
general mechanism (e.g., changes in neuromodulation) accounts
for changes in representational properties.
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