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Abstract 

White matter is fundamental for efficient and accurate information transfer throughout the 

human brain and thus crucial for intelligence. Previous studies often demonstrated 

associations between fractional anisotropy (FA) as a metric of white matter “microstructural 

integrity” and intelligence, but it is still unclear, whether this relation is due to greater axon 

density, parallel, homogenous fiber orientation distributions, or greater myelination since all of 

these measures influence FA. Using neurite orientation dispersion and density imaging 

(NODDI) and myelin water fraction (MWF) imaging data, we analyzed the microstructural 

architecture of intelligence in more detail in a sample of 500 healthy young adults. Furthermore, 

we were interested whether specific white matter microstructural indices play intermediary 

roles in the pathway that links genetic disposition for intelligence to phenotype. Thus, we 

conducted for the first time mediation analyses investigating whether neurite density (NDI), 

orientation dispersion (ODI), and MWF of 64 white matter fiber tracts mediate the effects of 

polygenic scores for intelligence (PGSGI) on general intelligence. By doing so, we showed that 

NDI, but not ODI or MWF of white matter fiber tracts was significantly associated with general 

intelligence and that the NDI of six fiber tracts mediated the relation between genetic variability 

and g. These findings are a crucial step forward in decoding the neurogenetic underpinnings 

of general intelligence, as they identify that neurite density of specific fiber tracts relates 

polygenic variation to g, whereas orientation dispersion and myelination did not. 

Keywords: general intelligence, myelin water fraction, neurite density, orientation dispersion, 

polygenic scores 
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Introduction 

Intelligence usually refers to the “[…] ability to understand complex ideas, to adapt effectively 

to the environment, to learn from experience, to engage in various forms of reasoning, to 

overcome obstacles by taking thought” [1]. It is one of the most studied human phenotypes 

and the last decades have produced cognitive tests in abundance to measure intelligence [2]. 

Although the various tests capture different aspects of intelligence, such as reasoning abilities 

or processing speed [3], individuals who perform well on one test tend to achieve high scores 

on other cognitive tests, regardless of the skills required [4,2]. Spearman [4] concluded that 

there was a factor of general intelligence, g, positioned at the apex of the hierarchy, with 

broader cognitive domains situated below and more specific cognitive abilities at the base [3,5]. 

The g factor illustrates the generalist character of intelligence [6], which is also reflected in the 

numerous associated life outcomes, such as school performance [7], job performance [8], 

socioeconomic success [9], income [10], or physical health [11]. In addition to the predictive 

value of intelligence, interindividual differences have been shown to be stable across the 

lifespan [12]. Consequently, there have been countless research efforts to uncover the 

neurogenetic mechanisms from which interindividual differences in intelligence arise. 

A well-known framework for understanding intelligence on a neurobiological level provides the 

Parieto-Frontal Integration Theory of intelligence (P-FIT) [13]. This model suggests that 

intelligence is based on numerous areas throughout the cortex, especially in frontal and 

parietal regions, which are strongly interconnected and enable efficient information transfer. 

The idea that a brain network underlies intelligence also emphasized the role of structural 

connections, which are present in the form of white matter fiber tracts [13].  

One technique to quantify white matter properties is diffusion-weighted imaging (DWI), whose 

advent has ushered in a new era of white matter brain imaging studies [2,14]. As the diffusion 

of water molecules is a three-dimensional process that includes random translational motion 

of molecules in space, diffusion anisotropy allows inferences about the presence of obstacles 

such as axons and their myelin sheaths [14]. Most studies use fractional anisotropy (FA) as a 

summative metric to describe white matter microstructural integrity [15]. In this context, higher 

FA values suggest more parallel diffusion pathways [16,17].  

The relation between FA and intelligence has been widely studied [18-35]. The majority of 

studies reported positive associations between average FA values from many major white 

matter fiber tracts and cognitive performance [15]. Cox et al. [26], for example, used a large 

sample from the UK Biobank study and reported significant positive associations between FA 

and general intelligence in 25 out of 27 white matter fiber tracts. As summarized by Genç, 

Fraenz [15], FA values of the genu and the splenium of the corpus callosum, the uncinate 

fasciculus, and the superior longitudinal fasciculus were most often associated with differences 
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in intelligence. In one recent study, Stammen et al. [34] showed robust associations between 

FA and general intelligence in four independent samples, located around the left-hemispheric 

forceps minor, superior longitudinal fasciculus, and cingulum-cingulate gyrus.  

Since general intelligence appears to be robustly associated with higher FA values and thus 

stronger anisotropic diffusion patterns, Stammen et al. [34] formulated three possible 

explanations as to why higher FA values could be associated with higher intelligence. First, the 

relation could be due to greater axon density, enabling more parallel information processing 

by providing more pathways to think through problems relatively simultaneously. Second, the 

relation could be due to parallel, homogenous fiber orientation distributions that run directly 

from one brain region to another, thereby enabling more direct and efficient information transfer 

throughout the brain. Third, the relation could be due to greater myelination, enabling faster 

information processing speed and signal conduction velocity [36,37]. However, the exact 

neurobiological basis causing FA signal differences remains unclear, so the hypotheses put 

forward cannot be tested by looking at FA values alone. FA is a multifaceted and non-specific 

metric influenced by various physiological factors, including axon diameter, fiber density, 

myelin concentration, or the distribution of fiber orientation [38,14,39,40].  

Recent advances in neuroimaging offer promising techniques that allow more differentiated 

and specific conclusions to be drawn about the microstructure of white matter and the three 

hypotheses mentioned [40]. Neurite orientation dispersion and density imaging (NODDI) [41] 

and myelin water fraction (MWF) imaging [42,37] both are non-invasive, but take advantage of 

the unique patterns that water molecules create in different environments.  

NODDI utilizes a three-compartment model that differentiates between intra-neurite, extra-

neurite, and cerebrospinal fluid (CSF) environments based on a multi-shell high-angular-

resolution diffusion imaging protocol [41]. While isotropic diffusion occurs mainly in regions 

with CSF, intracellular compartments are characterized by stick-like or cylindrically symmetrical 

diffusion, as the water molecules are restricted by the membranes of neurites, and extracellular 

compartments by hindered diffusion, as there are many cellular membranes of somas and glia 

cells. The different diffusion properties allow the estimation of NODDI markers as 

approximations for different aspects of neurite morphology, such as the neurite density index 

(NDI), which represents the volume fraction of intra-neurite environments, and the orientation 

dispersion index (ODI), which quantifies the angular variation of neurite dispersion [41]. 

Histological studies supported the validity of the NODDI model [43].  

MWF imaging relies on signals from myelin water, as signals from larger molecules such as 

lipids and proteins (main components of myelin) quickly decay to zero [42,37]. Unmyelinated 

neurons and glia cells have single bilayer membranes, whereas myelinated neurons possess 

multi-bilayer membranes, with roughly 40% of their mass consisting of compartmentalized 
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water [42]. Although there is currently no method capable to measure the myelin bilayer 

directly, MWF imaging is considered the method of choice to estimate myelin content in vivo 

[42,37]. Studies validated the specificity of MWF imaging mapping the myelin bilayer by 

comparison with histological results [44-47] and demonstrated that MWF imaging has good 

reliability [48-51]. 

Thus, the question of whether the association between higher FA values and higher 

intelligence is due to greater axon density, parallel, homogenous fiber orientation distributions, 

or greater myelination can be answered by associating general intelligence with the 

corresponding indices NDI, ODI, and MWF. However, there are few to no studies that have 

used NODDI or MWF imaging in relation to intelligence. 

Regarding NODDI, Genç et al. [52] were the first to analyze the microstructural architecture of 

intelligence. They showed that higher intelligence was associated with lower NDI and ODI in 

the gray matter and thus concluded that the neuronal circuitry linked to higher intelligence is 

structured in a sparse and efficient way [52]. For white matter, which is more relevant for this 

paper, associations between NODDI metrics and individual cognitive functions such as paired 

associate learning [53], episodic memory [54], or processing speed [54] have been reported in 

healthy adults. Callow et al. [55] found that the ODI of the cerebellar peduncle was significantly 

associated with fluid, but not crystallized cognition in healthy young adults.  

To the best of our knowledge, there is no paper to date that analyzed MWF with regard to 

general intelligence in healthy adults. Penke et al. [20] were the first to use a biomarker of 

myelin, magnetization transfer ratio (MTR), to study intelligence in a sample of healthy older 

people. They were able to show that MTR correlated significantly with general intelligence. 

However, although a change in myelin content causes a change in MTR, MTR is also 

influenced by other pathological factors [42,56,57], so MTR is not as specific to myelin as MWF 

[42,37]. The relation between MWF and cognitive abilities in healthy adults has only been 

studied for specific cognitive functions such as processing speed [58], executive functions [59], 

or memory performance [60], but not for general intelligence. 

To better understand the microstructural architecture of general intelligence, our study aimed 

to analyze the relation between general intelligence and NDI, ODI, and MWF within the same 

sample, with all indices extracted from the same 64 white matter fiber tracts. To further 

complete the picture, we did not limit our analyses to the relation between the brain and 

intelligence, but included genes and directly considered the triad between genes, the brain, 

and behavior via mediation analyses. 

General intelligence is a highly heritable trait, with inherited differences in desoxyribonucleic 

acid (DNA) sequence explaining for about half of the variance in intelligence across all ages 

[61,6,62,2]. However, heritability of intelligence is not due to few individual genes, but results 
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from thousands of genetic variants, mostly single nucleotide polymorphisms (SNPs), whose 

small effects on the variation of intelligence add up [2,6]. Polygenic scores (PGS) offer the 

possibility to account for this highly polygenic architecture by aggregating the effects of 

different SNPs across the genome into a summarized measure [63]. Results of genome-wide 

association studies (GWAS), used to identify which SNPs throughout the genome are 

statistically associated with a particular trait, show which of the two alleles for a SNP is 

positively associated with the trait (called increasing allele) and provide effect sizes for each 

SNP [2,6]. A PGS is constructed by summing the number of increasing alleles associated with 

intelligence across SNPs and weighting them by the respective effect size obtained from 

GWAS [2,6]. PGS for intelligence, derived from one of the largest GWAS to date based on 

269,867 individuals, explain up to 5.2% of variance in general intelligence in independent 

samples [64].  

Genetic correlations show that the genetic variants associated with intelligence are partially 

consistent with those associated with brain structure [2,65]. White matter microstructure has 

been shown to be highly polygenic as well and positive genetic correlations with higher 

intelligence have been identified [2,66-68]. The gene sets significantly associated with 

intelligence include neurogenesis, neuron differentiation, central nervous system neuron 

differentiation, regulation of nervous system development, positive regulation of nervous 

system development, and regulation of synapse structure or activity [64]. While other GWAS 

analyses on intelligence reported similar gene sets [65,69], gene sets such as myelin sheath 

or regulation of myelination were not found to be significantly related to intelligence in any 

study. Lee et al. [70], who performed a large GWAS on educational attainment, also found no 

gene sets related to glial cells that were positively enriched and concluded that differences in 

cognition may not necessarily be driven by differences in myelination and thus transmission 

speed.  

Mediation analyses blaze the best trail to investigate the relation between PGS for general 

intelligence (PGSGI), microstructural white matter indices (NDI, ODI, and MWF), and general 

intelligence. However, there are only few mediation studies in healthy adults investigating the 

relation between genes, the brain, and intelligence and those that exist have focused their 

analyses on mediation effects of total brain volume, surface area, cortical thickness, white 

matter fiber network efficiency, and functional efficiency [71-75]. Although Genç et al. [72] found 

the white matter fiber network efficiency of two brain areas to be mediators regarding the 

effects of PGS on general intelligence using data from the same sample, they did not include 

white matter microstructure indices in their analyses, and to the best of our knowledge, other 

studies have not used such indices in mediation analyses in healthy adults either.  

To summarize, NODDI and MWF imaging, with their indices NDI, ODI, and MWF, offer 

opportunities to analyze the microstructural architecture of intelligence on a new level and draw 
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more differentiated and specific conclusions regarding the question whether the association 

between higher FA values and higher intelligence is due to greater axon density (NDI), parallel, 

homogenous fiber orientation distributions (ODI), or greater myelination (MWF). While these 

opportunities have only been used selectively for NODDI, to our knowledge there is no study 

that has investigated the relation between MWF and general intelligence in healthy young 

adults, so we performed this analysis here for the first time. Furthermore, we expanded the 

existing literature on mediation analyses regarding the relations between genes, the brain, and 

intelligence to include white matter microstructure. We analyzed the effects of PGSGI on 

general intelligence and tested the mediating role of NDI, ODI, and MWF of 64 white matter 

fiber tracts in a large sample of at least 500 individuals. Thus, this study presents the first 

mediation analyses that give insight whether white matter microstructure indices provide a 

biological pathway through which our genetics influence general intelligence. 
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Methods 

Participants 

The sample consisted of 557 adults with a mean age of 27.33 years (SD = 9.43 years; range: 

18-75 years, 503 right-handers), including 283 men (mean age = 27.71 years; SD = 9.86 years, 

246 right-handers) and 274 women (mean age = 26.94 years; SD = 8.96 years, 257 right-

handers). It has previously been used to investigate relations between genetic variability, brain 

properties, and intelligence [72]. Handedness was assessed using the Edinburgh Handedness 

Inventory [76]. Participants were mostly university students of different majors (mean years of 

education = 17.14 years; SD = 3.12 years), who were either financially compensated for their 

participation or received course credits. Individuals who had insufficient German language 

skills or reported having done any of the employed intelligence tests within the last five years 

were excluded from the study. Health status was assessed by a self-report questionnaire. 

Individuals were also not admitted to the study if they or any of their close relatives suffered 

currently or in the past from neurological and/or mental illnesses. The study protocol was 

approved by the Local Ethics Committee of the Faculty of Psychology at Ruhr University 

Bochum (vote Nr. 165). All participants gave written informed consent and were treated 

according to the Declaration of Helsinki.  

Acquisition and analysis of behavioral data 

General intelligence was assessed by the use of four paper-and-pencil tests. The tests were 

conducted in a quiet and well-lit room.  

I-S-T 2000 R 
The Intelligenz-Struktur-Test 2000 R (I-S-T 2000 R) [77] is a well-established German 

intelligence test battery, requiring about 2.5 hours to complete. It evaluates various aspects of 

intelligence as well as general intelligence and is largely comparable to the internationally 

established Wechsler Adult Intelligence Scale Forth Edition [78]. The majority of included 

cognitive test items are presented in multiple-choice format. The test consists of a basic and 

an extension module. Within the basic module, verbal, numerical, and figural abilities are each 

assessed by three different mental reasoning tasks of 20 items. Verbal intelligence is assessed 

by tasks in which participants must complete sentences (IST_SEN), find analogies (IST_ANA), 

and recognize similarities (IST_SIM). Numerical intelligence is assessed by tasks involving 

arithmetic calculations (IST_CAL), number series (IST_SER), and mathematical equations to 

which arithmetic signs need to be added (IST_SIG). Figural intelligence is assessed by tasks 

in which participants must select and reassemble parts of a cut-up figure (IST_SEL), mentally 

rotate and match three-dimensional objects (IST_CUB), and solve matrix-reasoning problems 

(IST_MAT). In addition, retention (IST_RET) is assessed by ten verbal and 13 figural items. 

Here, participants must memorize series of words or figure pairs. The extension module 
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comprises 84 multiple-choice questions on six knowledge facets (art/literature, economy, 

geography/history, mathematics, science, and daily life) and measures general knowledge 

(IST_KNO). Reliability estimates (Cronbach’s a) are between .88 and .96 for subtests and 

composite scores. The recent norming sample consists of about 5800 individuals for the basic 

module and 661 individuals for the extension module. The age range in the norming sample is 

between 15 and 60 years and both sexes are represented equally [77]!"

BOMAT-Advanced Short 
The Bochumer Matrizentest (BOMAT) [79] is a non-verbal German intelligence test which is 

widely used in neuroscientific research [79-82,52,83,84] and whose structure resembles that 

of the well-established Raven’s Advanced Progressive Matrices [85]. Within the framework of 

our study, we employed the advanced short version, which is characterized by high 

discriminatory power in samples with generally high intellectual abilities, thus avoiding possible 

ceiling effects [52,83]. The test comprises two parallel forms with 29 matrix-reasoning items. 

Each item shows a 5-by-3 matrix composed of elements arranged according to a specific but 

unspecified rule. One field within the matrix is empty and needs to be filled with one of six 

provided elements that follows the rule. The participants were assigned to one of the two 

parallel forms and had to complete as many matrices as possible within a time limit of 45 

minutes. Split-half reliability of the BOMAT is .89, Cronbach’s a is .92, and reliability between 

the parallel forms is .86. The recent norming sample consists of about 2100 individuals with 

an age range between 18 and 60 years and equal sex representation [79]. 

BOWIT 
The Bochumer Wissenstest (BOWIT) [86] is a German general knowledge questionnaire. It 

assesses eleven different knowledge facets, from two major domains. The four facets 

biology/chemistry, mathematics/physics, nutrition/exercise/health, and technology/electronics 

are assigned to the scientific-technical knowledge domain. The social and humanistic 

knowledge domain includes seven facets: arts/architecture, civics/politics, economies/laws, 

geography/logistics, history/archaeology, language/literature, and philosophy/religion. The 

BOWIT is available in two parallel test forms, in which each knowledge facet is represented by 

14 multiple-choice questions. To measure general knowledge as precisely as possible, all 

participants had to complete both test forms, resulting in 308 items. The BOWIT shows 

reliability estimates greater than .90: split-half reliability is reported as .96, Cronbach’s a .95, 

test-retest reliability .96, and parallel-form reliability .91. The recent norming sample consists 

of about 2300 individuals with an age range between 18 and 66 years and equal sex 

representation [86].  
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ZVT 
The Zahlenverbindungstest (ZVT) [87] is a trail-making test used to assess the cognitive 

processing speed of both children and adults. After completing two short sample tasks, four 

main tasks are assessed. Here, participants connect numbers from 1 to 90 according to a 

specific rule as fast as possible. The processing times for the four tasks are averaged to obtain 

an overall measure of processing speed. The reliability across the four tasks is reported as .95 

in adults. The six-month retest-reliability is reported to be between .84 and .90. The recent 

norming sample consists of about 2109 individuals with an age range between eight and 60 

years and equal sex representation [87].  

Computation of the general intelligence factor, g 
We computed the general intelligence factor to provide a comparable and robust measure of 

intelligence. When included tests measure intelligence broadly enough, g factors derived from 

different test batteries are statistically equivalent [88,89]. As described in Stammen et al. [34], 

we used the intelligence test scores to compute g factor scores for every participant. After 

regressing age, sex, age*sex, age2, and age2*sex from the test scores, we used the 

standardized residuals to develop a hierarchical factor model via exploratory factor analysis. 

Subsequently, we performed confirmatory factor analysis to assess model fit using the chi-

square (Х2)" statistic as well as the fit indices Root Mean Square Error of Approximation 

(RMSEA), Standardized Root Mean Square Residual (SRMR), Comparative Fit Index (CFI), 

and Tucker-Lewis Index (TLI). The evaluation of model fit yielded good fit. Although the chi-

square (Х2)" statistic assessing the magnitude of discrepancy between the model-implied 

variance-covariance matrix and the empirically observed variance-covariance matrix [90] was 

significant (Х2(64) = 127.97, p < .001), this did not itself show poor model fit since the chi-

square (Х2) statistic is a direct function of sample size meaning that the probability of rejecting 

any model increases with greater sample size [91,92]. The other fit indices (RMSEA = .042, 

SRMR = .033, CFI = .979, and TLI = .969) were all acceptable as values of RMSEA and SRMR 

less than .05 and values of CFI and TLI greater than .97 are considered good [90]. Based on 

the postulated confirmatory factor model shown in Figure 1, we calculated regression-based 

g-factor scores for every participant, winsorizing outliers [93].  
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Fig. 1 Confirmatory factor analytic model. g = general factor of intelligence, ver = verbal intelligence as 

broad cognitive domain, num = numerical intelligence as broad cognitive domain, fig = figural 
intelligence as broad cognitive domain, IST_SEN = subtest Sentence Completion of the I-S-T 2000 R, 

IST_SIM = subtest Similarities of the I-S-T 2000 R, IST_ANA = subtest Analogies of the I-S-T 2000 R, 

BOWIT = Bochumer Wissenstest, IST_KNO = parameter Knowledge of the I-S-T 2000 R, IST_CAL = 

subtest Calculations of the I-S-T 2000 R, IST_SER = subtest Number Series of the I-S-T 2000 R, 

IST_SIG = subtest Numerical Signs of the I-S-T 2000 R, ZVT = Zahlenverbindungstest, IST_SEL = 

subtest Figure Selection of the I-S-T 2000 R, IST_CUB = subtest Cubes of the I-S-T 2000 R, IST_MAT 

= subtest Matrices of the I-S-T 2000 R, IST_RET = parameter Retentiveness of the I-S-T 2000 R, 
BOMAT = Bochumer Matrizentest 

Intelligence level 
Unfortunately, it is not possible to link g to the intelligence quotient (IQ) scale. Nevertheless, 

we used norming data of some tests to estimate the intelligence level. Norming data of the 

subtests of the I-S-T 2000 R revealed that the sample’s mean IQ was 115 (SD = 13.0). The 

fact that our sample had a mean score one standard deviation above average may have 

impacted the associations with the polygenic scores and the white matter fiber tracts’ 

microstructure.  
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DNA sampling and genotyping  

We used exfoliated cells that were brushed from the participants’ oral mucosa for genotyping. 

DNA isolation was done with QIAamp DNA mini Kit (Qiagen GmbH, Hilden, Germany). 

Genotyping was executed with the Illumina Infinium Global Screening Array 1.0 with MDD and 

Psych content (Illumina, San Diego, CA, USA) at the Life & Brain facilities (Bonn, Germany) 

and yielded 745,747 SNPs. Filtering was conducted with PLINK 1.9 [94,95] by eliminating all 

SNPs with a minor allele frequency (MAF) of < 0.01, deviating from Hardy-Weinberg 

equilibrium (HWE) with a p-value of < 1*10-6, and missing data > 0.02. Participants were 

removed with > 0.02 missingness, sex-mismatch, and heterozygosity rate > |0.2|. A high quality 

(HWE p > 0.02, MAF > 0.2, missingness = 0) and linkage disequilibrium (LD) pruned (r2 = 0.1) 

SNP set was used for filtering for relatedness and population structure. In pairs of related 

subjects, pi hat > 0.2 was used to exclude subjects randomly. Principal components (PCs) 

were generated to control for population stratification. Participants who deviated more than |6| 

standard deviations from the mean on at least one of the first 20 PCs were classified as outliers 

and excluded. The final data set consisted of 519 participants and 498,760 SNPs. The 

samples’ filtered genotype data was submitted for imputation to the Michigan Imputation server 

[96] using the European population of the Haplotypes Reference Consortium panel (r1.1 2016; 

hg19) and a R2 filter of 0.3. We chose Eagle 2.4 for phasing and Minimac4 for imputation. After 

a final MAF < 0.01 filtering step, 5,338,876 SNPs were available for analysis. 

Polygenic scores 

We generated genome-wide PGS for each participant using publicly available summary 

statistics for general intelligence [N = 269,867; 64]. General intelligence PGS  (PGSGI) were 

computed as weighted sums of each subject’s trait-associated alleles across all SNPs using 

PRSice 2.1.6 [97]. Specifically, we computed best-fit PGSGI that showed the strongest 

association with general intelligence [72,84]. We applied a p-value threshold (PT) for the 

inclusion of SNPs that was chosen empirically by carrying out multiple linear regression 

analyses iteratively for the range of PT 5*10-8 to 0.5 in steps of 5*10-5. The predictive power of 

the PGSGI was assessed by the “incremental R2” statistic [70]. Incremental R2 indicates the 

increase in the coefficient of determination (R2) when the PGSGI is added as a covariate to a 

regression model predicting general intelligence together with a number of baseline control 

variables (here: age, sex, and the first four PCs of population stratification). Linear parametric 

methods were chosen for all statistical analyses in PRSice. Testing was two-tailed with an α-

level of p < .05. The PGSGI with the greatest predictive power, explaining the maximum amount 

of g variance, was chosen for further analyses. The best-fit threshold selected for PGSGI was 

0.0062, which resulted in 4,659 SNPs being included in the calculation of PGSGI. PGSGI 

explained 4.37% of variance of general intelligence in our sample (p < .001). A distribution of 

the PGSGI is shown in Figure S1. 
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Acquisition and analysis of imaging data 

All images were collected within one session on a Philips 3T Achieva scanner at the 

Bergmannsheil Hospital in Bochum, Germany, using a 32-channel head coil.  

Multi-shell diffusion-weighted imaging 
For the analysis of NODDI coefficients, a diffusion-weighted three-shell image was acquired 

using echo-planar imaging (EPI) with the following parameters: time repetition (TR) = 7652 

ms; time echo (TE) = 87 ms; flip angle = 90°; 60 slices; matrix size = 112 x 112; voxel size = 2 

x 2 x 2 mm; parallel imaging sensitivity encoding (SENSE) factor = 2; direction of acquisition 

= anterior-posterior (AP). Diffusion weighting was uniformly distributed along 120 directions 

(20 directions with a b-value of 1000 s/mm2; 40 directions with a b-value of 1800 s/mm2; 60 

directions with a b-value of 2500 s/mm2). We used the multiple acquisitions for standardization 

of structural imaging validation and evaluation toolbox (MASSIVE toolbox) [98] to generate all 

diffusion directions within and between shells non-collinear to each other. Additionally, eight 

volumes with no diffusion weighting (b-value of 0 s/mm2) were acquired for the purpose of 

motion correction and computation of NODDI coefficients. Diffusion-weighted data was 

collected with reversed phase-encode directions, resulting in pairs of images with distortions 

going in opposite directions. Total acquisition time was 18 minutes.  

Diffusion-weighted data were prepared for NODDI coefficients via a preprocessing pipeline 

comprising the following steps. First, images were corrected for signal drift [99] using 

ExploreDTI [100]. Second, we utilized the topup command from the Oxford Centre for 

Functional Magnetic Resonance Imaging of the Brain’s (FMRIB’s) Software Library (FSL) 

toolbox (version 6.0.7.7; https://fsl.fmrib.ox.ac.uk/fsl/docs/#/) [101,102] to estimate the 

susceptibility-induced off-resonance field based on pairs of images with opposite phase-

encode directions. Third, the topup output was used in combination with the eddy command 

[103], which is also part of the FSL toolbox [101], to correct for susceptibility, eddy currents, 

and head movement. Importantly, we also performed outlier detection during this step to 

identify slices where signal had been lost due to head movement during the diffusion encoding 

[104]. 

We used the Microstructure Diffusion Toolbox (MDT; https://github.com/robbert-harms/MDT) 

[105,106] to compute NODDI coefficients. The advantage of MDT in comparison to the original 

NODDI toolbox in MATLAB [41] is that MDT is utilized on Graphics Processing Unit (GPU) 

cores and thus dramatically reduces estimation time. It is even faster than the AMICO toolbox 

[107] we used in previous studies [40,52,108]. By default, MDT uses the Offset Gaussian 

likelihood model and the Powell conjugate-direction optimization routine [109] for maximum 

likelihood estimation [105]. Specifically, we employed the implemented, three-part NODDI 

model of Zhang et al. [41] that distinguishes between intra-neurite, extra-neurite, and CSF 
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environments. The NODDI technique is based on a two-level approach. First, the proportion 

of free moving water within each voxel is analyzed based on the diffusion signal obtained by 

the multi-shell high-angular-resolution imaging protocol [110-112,41]. This proportion is called 

isotropic volume fraction and reflects the amount of isotropic diffusion with Gaussian properties 

that mainly characterizes regions with a focus on CSF. Second, the remaining portion of the 

diffusion signal is assigned to one of the complementary fractions, either intra- or extra-neurite 

environment [41,110,111]. The amount of intra-neurite environments is quantified as the intra-

neurite volume fraction or NDI. The intra-cellular compartment represents the amount of stick-

like or cylindrically symmetric diffusion that occurs when water molecules are confined by the 

membranes of neurites and resembles the proportion of axonal density in white matter as 

shown by comparison with light microscopy and electron microscopy in histological samples 

[110]. Extra-neurite environments in the white matter are usually full of various types of glia 

cells and therefore characterized by hindered diffusion [110,111,41]. A NODDI’s summary 

statistic is the neurite ODI that quantifies angular variation of neurite orientation [41]. ODI is a 

measure of tortuosity that couples the intra-neurite space and the extra-neurite space and thus 

leads to an alignment or dispersion of the axons in the white matter [112,41]. Examples of NDI 

and ODI coefficient maps from a representative individual are illustrated in Figure 2 (upper-left 

corner). 

Myelin water imaging 
A previously published 32 multi-echo (ME) three-dimensional (3D) turbo gradient spin echo 

(GRASE) sequence with refocusing angle sweep [113,112,40,114] was acquired with the 

following parameters: TR = 800 ms; TE = 32 echoes at 10 ms echo spacing (ranging from 10 

to 320 ms); 60 slices; partial Fourier acquisition in both phase encoding directions; matrix size 

= 112 x 112; voxel size = 2 x 2 x 2 mm; parallel imaging SENSE factor = 2; direction of 

acquisition = right-left (RL). Total acquisition time for this sequence was eight minutes.  

To assess the myelin content of the white matter fiber tracts, we used an in-house algorithm 

[114,40] written in MATLAB (version 8.5.0.197613 (R2015a), The MathWorks Inc., Natick, MA) 

to construct parameter maps representing the MWF for each voxel based on the 3D ME-

GRASE sequence. As described in Prasloski et al. [113] in detail, this algorithm analyzed the 

ME decay curves voxel by voxel using multicomponent T2 analysis with simultaneous 

correction for contamination of the decay curves by stimulated echoes resulting from B1 

inhomogeneity and imperfect refocusing pulses. Voxelwise ME decay curves were acquired 

from the 3D ME-GRASE images and transformed into a continuous T2-distribution by applying 

a regularized non-negative least squares (NNLS) approach [115,116]. We used an extended 

phase graph algorithm to take possible stimulated echoes due to non-ideal refocusing pulse 

flip angles into consideration [117,118,113]. During the fitting procedure, a regularization factor 

of 1.02 was applied to increase robustness of the ill-posed fitting problem and to assure smooth 
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T2 amplitude distributions. T2 distributions were generated using 101 logarithmically spaced 

exponential decay base functions for echo decay with T2 values ranging from 0.01 to 2s. From 

the T2 distributions, the MWF was calculated for each voxel as the signal integral fraction 

between 10 and 40ms relative to the total T2 distribution integral (area under the curve). This 

resulted in whole-brain MWF maps for each subject, as exemplified in Figure 2 (upper-left 

corner). 

 

Fig. 2 Processing steps of neuroimaging and statistical analyses. Multi-shell diffusion-weighted images 

were used to compute neurite density and neurite orientation dispersion indices (NDI and ODI). Images 

resulting from the three-dimensional (3D) multi-echo (ME) turbo gradient spin echo (GRASE) sequence 

were used to compute the myelin water fraction (MWF) for each voxel. 64 white matter fiber tracts 
provided by the population-based HCP-1065 probabilistic tract atlas [119,120] were downloaded, 

transformed in the respective native space, and served as anatomical references for the extraction of 
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the microstructural properties NDI, ODI, and MWF. Fiber tract-specific multi-mediator analyses were 

performed via elastic-net regression for each microstructural property. General intelligence, quantified 

by the factor of general intelligence g, was the dependent variable, while the polygenic score of general 

intelligence (PGSGI) was the independent variable. NDI, ODI, or MWF values of each white matter fiber 

tract served as mediators 

Quantification of microstructural properties in white matter fiber tracts 

We used 64 white matter fiber tracts provided by the population-based HCP-1065 probabilistic 

tract atlas [119,120], from the official website (https://brain.labsolver.org/hcp_trk_atlas.html) as 

NIfTI files. This atlas displays for 64 different fiber tracts for each voxel the probability of being 

part of the respective white matter fiber tract compiled from the tractography of 1065 subjects 

[119], with underlying data (“1200 Subjects Data Release”) provided by the Human 

Connectome Project (HCP), WU-Minn Consortium (Principal Investigators: David van Essen 

and Kamil Ugurbil; 1U54MH091657), funded by the 16 United States National Institutes of 

Health (NIH) and Centers supporting the NIH Blueprint for Neuroscience Research and by the 

McDonnell Center for Systems Neuroscience at Washington University [121]. In a first step, 

fiber tracts’ NIfTI files were processed using DSI Studio (https://dsi-studio.labsolver.org) 

[119,120]. We resized the dimensions to match the International Consortium for Brain Mapping 

(ICBM) 2009a Nonlinear Asymmetric NIfTI template file [122]. The threshold for the fiber tracts’ 

probability was set at 0.50 to include only voxels that were part of major white matter tracts in 

at least half of the sample and exclude peripheral voxels that are more susceptible to intra- 

and intersubjective variability. We then binarized the fiber tracts and transformed them into a 

common space via FMRIB’s Linear Image Registration Tool (FLIRT) [123-125]. We chose the 

template MNI152_T1_1mm_brain within FSL, which is derived from 152 structural images that 

have been nonlinearly registered into the common Montreal Neurologic Institute (MNI) 152 

standard space (1 x 1 x 1 mm). Starting from the MNI 152 standard space, we used FMRIB’s 

Nonlinear Image Registration Tool (FNIRT) [126] to nonlinearly transform the fiber tracts into 

the native space of the diffusion-weighted images as well as into the 3D-ME GRASE image 

space. Each participant’s aligned fiber tracts served as anatomical references from which 

NODDI coefficients and MWF coefficients were extracted (see Figure 2, upper-right corner). 

Statistical analyses 

All statistical analyses were conducted in R Studio (version 2022.12.0.353) [127] with R 

version 4.2.2 (2022-10-31) [128]. The final data set included 501 participants (242 women; 

mean age = 27.30 years; SD = 9.22 years; 455 right-handers) as we only had usable genetic 

data from 519 subjects and analyzable MWF data from 539 subjects. Data points were treated 

as outliers if they deviated more than three interquartile ranges from the respective variable’s 

group mean (PGSGI, mean NDI of all 64 fiber tracts, mean ODI of all 64 fiber tracts, mean MWF 

of all 64 fiber tracts, g). In such cases, all data from the corresponding participant were 
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removed from analysis. No subjects were excluded from analyses concerning PGSGI, NDI, 

MWF, and g, while one participant had to be excluded for analyses concerning PGSGI, ODI, 

and g (500 remaining subjects). 

To investigate whether a set of specific white matter fiber tracts mediates the association 

between PGSGI (independent variable) and general intelligence (dependent variable), we used 

exploratory mediation analysis by regularization (see Figure 2, lower-right corner), an 

approach developed to identify a set of mediators from a large pool of potential mediators 

without testing specific theory-based and predefined hypotheses [129,130]. Confirmatory 

theory-based approaches in general test models that have been specified in advance, rely on 

p-values to test statistical significance, require correction for multiple comparisons with respect 

to many possible mediators, and tend to overfit the data in the regression context, resulting in 

less generalizable solutions [130-132]. In contrast, exploratory mediation analysis by 

regularization is based on regularization and penalization techniques [130], such as the least 

absolute shrinkage and selection operator (lasso) [133]. It aims to improve the generalization 

ability of a model and prevent overfitting [134] by applying a penalty to effect sizes, resulting 

in small effect sizes being pushed to zero, leaving only strong non-zero effects.  

A detailed explanation of this machine learning approach is provided by Serang et al. [130]. In 

short, this approach is based on a two-stage process. First, all potential mediators of interest 

are included in a multiple mediator model which is then fit using lasso resulting in the 

corresponding regression weights a and b being penalized [135]. The tuning parameter of the 

penalty term, lambda, is typically selected by testing a range of candidate values via k-fold 

cross-validation, an approach primarily utilized to prevent overfitting [130]. The data is divided 

into k different subsets. The model is then trained on k-1 subsets, while the kth subset is used 

as the testing set. This is repeated k times so that each subset serves as the testing set once. 

The value of lambda chosen is the one with the best fit resulting in the lowest prediction error. 

Since the mediation effect of a mediator corresponds to the product of the regression 

parameters a and b, the effect becomes zero if either the a or b parameter of a mediator is 

regularized to zero by the penalty. Those mediators with non-zero values of a and b after 

regularization, will be considered selected as mediators. While this approach makes it possible 

to eliminate mediators with small effect sizes, it also means that the effect sizes of the selected 

mediators are close to zero due to penalization and are therefore underestimated. To eliminate 

this potential bias, the second step is to refit the model using only the selected mediators 

without any penalization [130]. This allows unbiased estimates of effect sizes to be obtained 

[129]. 

Instead of using lasso regression, we employed elastic-net regression in our analyses. Elastic-

net regression results from the combination of ridge regression [136] and lasso regression 

[133] and is thus another form of regularized regression [137] allowing better accuracy of 
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prediction on future data and interpretation of the model due to parsimony in contrast to 

ordinary least squares estimates. While lasso regression can penalize a parameter to zero and 

is therefore suitable for models where many variables are assumed to have little or no effect 

on the dependent variable, ridge regression can only asymptotically shrink parameters towards 

zero and is therefore suitable for models where most variables are assumed to have a 

considerable effect on the dependent variable. Elastic-net regression is an useful approach 

when there are no clear, predefined hypotheses for all variables [137]. Unlike lasso regression, 

which tends to randomly select only one variable from a group of variables with high 

correlations between them, elastic-net regression outperforms lasso as it can select groups of 

correlated variables [137]. The latter was an important argument in our decision to use elastic-

net regression instead of lasso regression.  

We used the xmed function from the regsem package [138,129,130]. All variables were 

standardized and residualized for age, sex, age*sex, age2, age2*sex, and the first four PCs of 

population stratification. Age, sex, age2, and their interaction effects were used as control 

variables, as many studies have shown age- and sex-dependent changes in microstructural 

properties as well as myelination [139-144]. The first four PCs of population stratification were 

added to control the variability of the genetic origin of the sample [145]. We calculated three 

mediation models, where PGSGI was always the independent variable, the NDI-, ODI-, or 

MWF-values of the 64 white matter fiber tracts each yielded the 64 mediators, and g was 

always the dependent variable. For all mediation models, the number of cross-validation 

subsets was set to k = 80, the threshold for detecting non-zero mediation effects was set to 

0.001 (default), and the type of regression was set to elastic-net. All coefficients were re-

estimated with lavaan [146] to avoid biased effect sizes. 

In addition to the mediation effects, we were also interested in the direct effects of PGSGI on 

the NODDI and MWF brain properties as well as the direct effects of the NODDI and MWF 

brain properties on intelligence (paths a and paths b). To identify variables with non-zero effects 

within path a and path b regressions, we followed a similar approach and set the threshold for 

detecting non-zero effects to 0.01 [72]. This threshold was chosen a little more liberally, since 

mediation effects are considerably smaller due to the multiplication of the regularized 

parameters a and b with values less than one. Again, all coefficients were re-estimated with 

lavaan [146]. 
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Results 

Neurite density index (NDI) 

The results of the multiple mediator analysis via elastic-net showed that PGSGI was associated 

with the NDI of 28 white matter fiber tracts (see Figure 3 and supplementary Table S1). All 

effects were positive, indicating that higher PGSGI is associated with higher NDI (path a) and 

thus higher axonal packing density. Furthermore, the NDI of 18 white matter fiber tracts was 

linked to the g score (path b). The association was positive for 12 white matter fiber tracts and 

negative for the remaining six fiber tracts. A total of six white matter fiber tracts mediated the 

effects of PGSGI on general intelligence (path a*b). While the five white matter fiber tracts 

middle longitudinal fasciculus (left hemisphere), cingulum parahippocampal parietal (right 

hemisphere), uncinate fasciculus (left hemisphere), cingulum parahippocampal parietal (left 

hemisphere), and superior longitudinal fasciculus three (right hemisphere) showed positive 

mediation effects, one white matter fiber tract, namely frontal aslant tract (left hemisphere), 

showed a negative mediation effect. 
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Fig. 3 Results of the multiple mediator analysis via elastic-net with neurite density index (NDI) values of 

64 white matter fiber tracts as mediators. The figure shows the results from path a analysis (block a) 
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PGS ~ NDI (a)) with white background, path b analysis (block b) NDI ~ g (b)) with light gray background, 

and the mediation effects a*b (bock c) Mediation (a*b)) with gray background. White matter fiber tracts 

are shown in left (L) or right (R) sagittal view. Positive effects are depicted in red and yellow, negative 

effects are depicted in blue and light-blue. For a list of white matter fiber tracts and effect sizes see Table 

S1. Abbreviations: Arc. Fasc. = arcuate fasciculus; Cing. Front. Par. = cingulum frontal parietal; Cing. 

Parahipp. Par. = cingulum parahippocampal parietal; Cing. Parol. = cingulum parolfactory; Corticopon. 
Tr. Par. = corticopontine tract parietal; Corticospi. Tr. = corticospinal tract; Corticostr. Tr. Ant. = 

corticostriatal tract anterior; Corticostr. Tr. Pos. = corticostriatal tract posterior; Corticostr. Tr. Sup. = 

corticostriatal tract superior; Front. Asl. Tr. = frontal aslant tract; Inf. Front. Occ. Fasc. = inferior fronto-

occipital fasciculus; Inf. Long. Fasc. = inferior longitudinal fasciculus; Mid. Long. Fasc. = middle 

longitudinal fasciculus; Opt. Rad. = optic radiation; Reticulospi. Tr. = reticulospinal tract; Sup. Long. 

Fasc. = superior longitudinal fasciculus; Tha. Rad. Ant. = thalamic radiation anterior; Tha. Rad. Pos. = 

thalamic radiation posterior; Tha. Rad. Sup. = thalamic radiation, superior; Unc. Fasc. = uncinate 

fasciculus; Vert. Occ. Fasc. = vertical occipital fasciculus 

Neurite orientation dispersion index (ODI)  

For the ODI metric, the elastic-net analysis showed that there was an association between 

PGSGI and the tracts’ ODI values in 16 white matter fiber tracts (see Figure 4a and 

supplementary Table S2). As for NDI, all effects were positive, indicating that higher PGSGI is 

associated with higher ODI (path a). Higher ODI indicates a cytoarchitecture with highly 

dispersed neurites. The multiple mediator analysis revealed no white matter fiber tracts that 

showed a significant association between the tracts’ ODI values and general intelligence (path 

b). Consequently, no mediators (path a*b) for the association between PGSGI and g could be 

identified. 

Myelin water fraction (MWF) 

PGSGI was associated with the tracts’ MWF values in four white matter fiber tracts, of which 

two exhibited positive effects and two exhibited negative effects (see Figure 4b and 

supplementary Table S3). Higher PGSGI was linked to higher MWF values of the corticopontine 

tract occipital in the left hemisphere and the reticulospinal tract in the right hemisphere, while 

higher PGSGI went along with lower MWF values of the cingulum parahippocampal in the left 

hemisphere and the parietal aslant tract in the right hemisphere. Higher MWF indicates higher 

myelin content and thus greater myelination. As for ODI, the multiple mediator analysis 

revealed no white matter fiber tracts that showed a significant association between the tracts’ 

MWF values and general intelligence (path b), and thus no mediators (path a*b) for the relation 

between PGSGI and g could be identified. 
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Fig. 4 Results of the multiple mediator analysis via elastic-net with neurite orientation dispersion index 

(ODI) values (block a) PGS ~ ODI (a)) or myelin water fraction (MWF) values (block b) PGS ~ MWF (a)) 

of 64 white matter fiber tracts as mediators. The figure only shows the results from paths a analyses, as 

no significant associations could be identified for paths b and thus also not for paths a*b. White matter 

fiber tracts are shown in left (L) or right (R) sagittal view. Positive effects are depicted in red and yellow, 

negative effects are depicted in blue and light-blue. For a list of white matter fiber tracts and effect sizes 
see Table S2 for ODI and Table S3 for MWF. Abbreviations: Arc. Fasc. = arcuate fasciculus; Cing. Front. 

Parahipp. = cinglum frontal parahippocampal; Cing. Front. Par. = cingulum frontal parietal; Cing. 

Parahipp. = cingulum parahippocampal; Corticobul. Tr. = corticobulbar tract; Corticopon. Tr. Occ. = 

corticopontine tract occipital; Corticostr. Tr. Ant. = corticostriatal tract anterior; Corticostr. Tr. Pos. = 

corticostriatal tract posterior; Front. Asl. Tr. = frontal aslant tract; Inf. Long. Fasc. = inferior longitudinal 

fasciculus; Mid. Long. Fasc. = middle longitudinal fasciculus; Par. Asl. Tr. = parietal aslant tract; 

Reticulospi. Tr. = reticulospinal tract; Sup. Long. Fasc. = superior longitudinal fasciculus; Unc. Fasc. = 
uncinate fasciculus; Vert. Occ. Fasc. = vertical occipital fasciculus
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Discussion 

The relation between FA values and intelligence has often been demonstrated, but it is still 

unclear whether it is due to greater axon density, parallel, homogenous fiber orientation 

distributions, or greater myelination. Using NODDI and MWF imaging data, we addressed this 

question and analyzed the microstructural architecture of intelligence in more detail. 

Furthermore, we were interested whether white matter microstructure indices are involved in 

the biological pathway that links genetic disposition to phenotype. Thus, we conducted for the 

first time mediation analyses in which we tested whether NDI, ODI, and MWF of 64 white 

matter fiber tracts mediated the effects of PGSGI on general intelligence in a large sample of 

at least 500 healthy young adults. By doing so, we showed that NDI, but not ODI or MWF of 

white matter fiber tracts was significantly associated with general intelligence and that the NDI 

of six fiber tracts mediated the relation between genes and g. 

With regard to the three hypotheses formulated by Stammen et al. [34] on possible links 

between brain characteristics and intelligence, our results provide clear evidence that 

differences in neurite density are crucial for differences in intelligence in the white matter, but 

not differences in neurite orientation dispersion or myelination. Since white matter mainly 

consists of myelinated axons [147], this means that the number or density of axons is more 

important for intelligent performance than their arrangement or degree of myelination. We 

found that 18 white matter fiber tracts showed a significant association between NDI and 

intelligence. For most of the fiber tracts, the correlation was positive, which fits the 

hypothesized explanation of Stammen et al. [34] that higher neurite density enables more 

parallel information processing by providing more possible pathways to think through problems 

simultaneously. It is a well-established finding that bigger brains are associated with higher 

levels of intelligence [26,148,149] and a common explanation for this phenomenon is that 

individuals with more cortical volume are likely to have a higher number of neurons [150]. Since 

most neurons have only a single axon [151], a higher axonal packing density suggests that 

there are more neurons in more intelligent individuals, which in turn provide them with 

enhanced computational power for problem solving and logical reasoning.  

Among the white matter fiber tracts that showed a positive association between NDI and g 

were many fiber tracts whose FA values had already been associated with intelligence 

[26,15,34], namely the cingulum, uncinate fasciculus, superior longitudinal fasciculus, and 

fornix. This means that our results complement and specify the previous FA results in terms of 

neurite density. All four fiber tracts have been associated with higher cognitive functions 

relevant to intelligence, such as attention, cognitive control, memory, visual-spatial functions, 

or language [152,141,153]. We found significant positive associations between NDI and 

general intelligence in bilateral parahippocampal parietal, bilateral parolfactory, and left-
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hemispheric frontal parietal subcomponents of the cingulum. Previous studies have shown that 

higher NDI in the (para)hippocampal cingulum was positively associated with higher cognition 

in a mixed sample of healthy older adults and patients with mild cognitive impairment or 

dementia [154], as well as with episodic memory and processing speed in healthy older adults 

[54]. The analysis of Raghavan et al. [154] also revealed that the superior longitudinal 

fasciculus had the strongest positive correlation between NDI and global cognition. This is 

consistent with our results of positive associations in the superior longitudinal fasciculus 1 in 

the left hemisphere and in the superior longitudinal fasciculus 3 in the right hemisphere. In 

contrast, our finding of an association between NDI and the left-hemispheric fornix was not 

found by Raghavan et al. [154], who averaged the values of the left and right fornix for their 

analysis. In addition, Coad et al. [53], who analyzed the pre- and postcommissural fornix 

separately, did not report any association between NDI and various cognitive factors. However, 

since the existing studies used different cognitive measures, defined the areas of white matter 

differently, and included different age groups, there are many possible factors that could have 

caused the different results. 

Not previously noticed in FA studies on intelligence were the positive associations with the 

middle longitudinal fasciculus, the corticopontine tract parietal, and the reticulospinal tract in 

the left hemisphere. However, they were also often not included as investigated fiber tracts in 

previous analyses. The middle longitudinal fasciculus is an association fiber tract that connects 

the superior temporal gyrus with the superior parietal lobule and parietooccipital region and 

appears to be involved in auditory comprehension as a part of the dorsal auditory stream [141] 

and higher-order functions related to acoustic information [155]. The corticopontine tract runs 

from the cerebral cortex through the internal capsule and ends at the unilateral pontine nucleus 

[156]. It is part of the cerebrocerebellar system and represents an intermediate step in involving 

the cerebellum into the distributed neural circuits relevant to motor control, thought, and 

emotion [157]. The corticoreticulospinal tract originates from the premotor cortex, descends to 

the spinal cord and is part of the extrapyramidal system [158,159]. Although this tract is 

primarily associated with gross motor function, gait function, and postural stability [159,158], it 

may also be important for cognitive function in as yet unknown ways, as there is evidence that 

poor motor function is associated with accelerated cognitive decline in old age [160,161].  

However, there were not only tracts whose NDI was positively associated with general 

intelligence, but also tracts that showed a negative relation, namely the bilateral frontal aslant 

tract, the left-hemispheric superior longitudinal fasciculus 2, the right-hemispheric thalamic 

radiation posterior, the left-hemispheric corticostriatal tract superior, and the left-hemispheric 

vertical occipital fasciculus. The finding that there were both positive and negative associations 

between white matter fiber tracts’ NDI and intelligence may explain why Genç et al. [52] as 

well as James et al. [162] found no associations between cognition and total white matter NDI. 
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Although negative associations are less straightforward to explain, we are not the first to have 

revealed negative associations in circumscribed areas of the brain for structural properties that 

are generally positively associated with intelligence [72,74]. Furthermore, negative 

associations between neurite density of fiber tracts and specific skills such as single-word 

reading and phonological processing have already been reported for children [163]. At first, it 

seems counterintuitive that lower axonal density was associated with higher intelligence as it 

contradicts the typical finding that “bigger is better” [26,148,149]. However, it could be the result 

of efficient wiring and thus signal transmission of the brain so that an optimal balance between 

signal and noise can be achieved and no redundant or irrelevant information is passed on, 

which could make efficient problem solving difficult due to inefficient circuitry [52,164]. 

Establishing and refining efficient brain circuits may be due to regressive events such as axon 

pruning or synapse elimination [165], which would fit well with the neural efficiency hypothesis 

stating that higher intelligent individuals need to invest less cortical resources while performing 

cognitive tasks [166,167]. The vertical occipital fasciculus, for example, is an association fiber 

tract that runs vertically at the posterolateral corner of the brain and interconnects the dorsal 

and ventral visual stream [168]. It may be that more precise information exchange between its 

target regions via less dense axons is advantageous for intelligent thinking, especially since 

Genç et al. [72] were able to show that lower nodal efficiency and thus less efficient information 

exchange of the ventromedial visual area 1 with the rest of the brain is associated with higher 

intelligence. However, it remains to be seen whether future research efforts will be able to 

replicate our findings of negative associations between NDI of the mentioned fiber tracts and 

general intelligence in independent samples. 

Our result that the orientation dispersion of no fiber tract was related to intelligence is 

consistent with the results of Callow et al. [55], who used the ICBM-DTI-81 white matter atlas 

[169-171] and reported a negative association in healthy adults only for the cerebellar 

peduncle, which was not included in our analysis. Our lack of an association at the level of 

individual fiber tracts is also well in line with the findings of Genç et al. [52] and James et al. 

[162], who reported no association at the global level. In contrast, Raghavan et al. [154] 

showed both significant positive and negative relations between ODI and global cognition in 

different fiber tracts, but used a mixed sample of healthy subjects and patients for their 

analysis. 

Although it is a long-standing hypothesis that differences in myelination may underlie 

differences in intelligence [172], our results showed that this is not the case for general 

intelligence. MWF was not significantly associated with g in any fiber tract of the white matter. 

Penke et al. [20], who first demonstrated an association between myelination in terms of MTR 

and general intelligence, also showed in their study that this association was completely 

mediated by a general factor of information processing speed. Accordingly, it could be that 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 15, 2025. ; https://doi.org/10.1101/2025.01.15.633108doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.15.633108


 26 

MWF is more specifically associated with processing speed than with general intelligence, 

especially since Page et al. [173] could show that both cognitive domains are at least partially 

separable with only partly overlapping cerebral correlates. Gong et al. [58] reported 

associations between lower MWF and steeper declines in processing speed in cognitively 

unimpaired adults and similar findings have been shown in patients with multiple sclerosis 

[174-176]. Recent results also suggest correlations of myelination with other cognitive abilities 

such as executive functions [59] or memory performance [60], so that the subfactors below g 

may be more strongly influenced by differences in myelination. Another way in which 

myelination could influence cognitive processes could be the coordination of different neuronal 

networks by accelerating action potentials and mediating precise timing and synchronization 

between neuronal ensembles [177]. However, more research is needed to understand the role 

of myelin architecture in functional connectivity [177]. 

Our finding that PGSGI was significantly associated with NDI of 28, ODI of 16, and MWF of four 

white matter fiber tracts is in accordance with previously reported results demonstrating 

relations between genetic variants associated with intelligence and various brain measures 

[72,178,74,75]. Even if not no association was found between genes for intelligence and 

myelination, the low proportion of fiber tracts with an association and the lack of an association 

between myelination and intelligence indicate that differences in intelligence may not mainly 

be due to differences in myelination, as Lee et al. [70] had already assumed. This result also 

fits well with the fact that gene sets such as myelin sheath or regulation of myelination were 

not found to be significantly associated with intelligence in the GWAS used to calculate the 

PGSGI [64]. Although Schmitt et al. [179], who used a different, less sensitive metric for 

myelination, found similar spatial heritability patterns for myelination and surface area, they 

reported that myelination, surface area, and cortical thickness were largely genetically 

independent in adults. Studies revealed that PGSGI was associated with surface area and 

cortical thickness of various brain areas and that both properties of specific brain regions 

mediated the association between PGSGI and intelligence [75,72,74]. Thus, it is conceivable 

that genes relevant to intelligence overlap more with genes relevant to structural morphological 

brain properties but less with genes relevant to myelination. However, it could also be that 

genes that overlap with intelligence and myelination have not yet been found in GWAS due to 

small effect sizes and limited sample sizes. 

Interestingly, the neurite density of six fiber tracts mediated the association between PGSGI 

and general intelligence. Five of them, namely the left-hemispheric middle longitudinal 

fasciculus, the bilateral cingulum parahippocampal parietal, the left-hemispheric uncinate 

fasciculus, and the right-hemispheric superior longitudinal fasciculus 3 exhibited positive 

mediation effects, which are well in line with the results of previous mediation analyses 

[75,72,74]. The middle longitudinal fasciculus runs from the superior temporal gyrus to the 
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superior parietal lobule and parietooccipital region [141], the cingulum parahippocampal 

parietal from the medial temporal lobe to the parietal and occipital lobes [180], the uncinate 

fasciculus from the anterior temporal lobes and amygdala to the lateral orbitofrontal and 

anterior portion of the prefrontal cortex [141], and the superior longitudinal fasciculus 3 from 

the frontal and opercular areas to the supramarginal gyrus [141]. Genç et al. [72] identified the 

bilaterally averaged surface area of the superior medial parietal cortex, intraparietal areas, and 

the posterior temporal cortex as positive mediators between PGSGI and intelligence and 

classified all of them as part of the P-FIT model [13]. Furthermore, they found the structural 

network efficiency of the inferior frontal gyrus to mediate positively between genes and 

intelligence. Lett et al. [75] reported that the association between genetic variants and general 

intelligence was mediated positively by the cortical thickness and surface area of the anterior 

cingulate cortex, the prefrontal cortex, the insula, the medial temporal cortex, and the inferior 

parietal cortex. Similar mediating areas were found by Williams et al. [74]. Our results of 

positive mediating white matter fiber tracts thus connect regions of the brain whose 

morphological properties have already been identified as mediating factors between genes 

and intelligence and as relevant for intelligent thinking in the P-FIT model [13]. Jung and Haier 

[13] assumed that the entire process of reasoning depends on the fidelity of underlying white 

matter and we provided evidence that a higher axonal packing density of specific white matter 

fiber tracts is one factor that links the genetic basis of intelligence to the corresponding 

phenotype. 

One white matter fiber tract, namely the left-hemispheric frontal aslant tract had a negative 

mediation effect, which was due to a negative association between its NDI and general 

intelligence. Negative mediation effects were also reported by Genç et al. [72], who, for 

example, identified the surface area of the inferior frontal sulcus as a negative mediator 

between genetic variants associated with educational attainment and intelligence. The frontal 

aslant tract runs from the pars opercularis and pars triangularis of the inferior frontal gyrus and 

the anterior insula to the supplementary motor area (SMA) and pre-SMA and is believed to be 

involved in speech planning, initiation, and production, but also kinematics and visuomotor 

processes [141]. As intraoperative direct electrical stimulation of the left frontal aslant tract led 

to stuttering [181], it could be that precise and efficient information exchange between its target 

regions due to lower axonal density is crucial for optimal functioning. However, the frontal 

aslant tract has not yet been well studied and has only recently been linked to other cognitive 

functions, so its role in cognition needs to be further characterized [182]. 

There are certain limitations to our study. Our paper is limited in its population 

representativeness as our sample mainly consisted of German university students who had a 

mean IQ score one standard deviation above average which might have impacted the 

associations between genetic variants, the brain, and intelligence we observed. As neurite 
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density as well as myelin content are associated with age [141,183], future studies should 

examine whether our results, which were limited to young adulthood, expand to other age 

groups or even use longitudinal designs. Furthermore, our analyses were restrained to 

individuals of European ancestry, thus further research is needed to investigate whether the 

NDI of the same white matter fiber tracts mediates the association between PGSGI and general 

intelligence to the same degree across ancestries. As PGSGI only predicted up to 5.2% of 

variance in general intelligence in independent samples [64], it could also be that additional 

white matter fiber tracts will be found when using a PGS that is based on a larger sample size 

and has better predictive power for intelligence. Additionally, our measures of neurite density, 

neurite orientation dispersion, and myelination were based on neuroimaging techniques that 

are limited in spatial resolution. It is known that the human brain contains different classes of 

axons ranging from large-diameter myelinated to small-diameter unmyelinated fibers 

[184,185], which could not be differentiated by the methods used. Finally, we limited our study 

to analyzing the relation between PGSGI, white matter microstructural architecture, and general 

intelligence in healthy subjects. However, our type of analysis can be extended to the multitude 

of other PGS [186], brain correlates, and phenotypes (e.g., intelligence subfactors) in future 

studies and may also provide valuable insights for clinical samples.  

The present paper provides the first study examining the mediating effects of the white matter 

microstructural indices NDI, ODI, and MWF on the association between genetic variation and 

general intelligence. We showed that the neurite density of specific white matter fiber tracts 

played a mediating role in the relation between cumulative genetic load for general intelligence 

and g-factor performance. In contrast, we found no significant associations with general 

intelligence for ODI and MWF. The latter was surprising, as myelination was considered a 

possible neurobiological correlate of intelligence. These findings are a crucial step forward in 

decoding the neurogenetic underpinnings of general intelligence, as they identify that the 

neurite density of specific white matter fiber tracts relate polygenic variation to g. 
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