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Abstract  32 

Background: Genetic variants may impact connectivity in the fear network such that 33 
genetically driven alterations of network properties (partially) explain individual differences in 34 
learning. Our aim was to identify genetic indices that predict physiological measures of fear 35 
learning mediated by MRI-based connectivity.  36 

Methods: We built prediction models using exploratory mediation analysis. Predictors were 37 
polygenic scores for several psychological disorders, neuroticism, cross-disorder risk, 38 
cognitive traits, and gene expression-based scores. Candidate mediators were structural and 39 
functional connectivity estimates between the hippocampus, amygdala, dorsal anterior 40 
cingulate, ventromedial prefrontal cortex and cerebellar nuclei. Learning measures based on 41 
skin conductance responses to conditioned fear stimuli (CS+), conditioned safety cues (CS-), 42 
and differential learning (CS+ vs. CS-), for both acquisition and extinction training served as 43 
outcomes.  44 

Results: Reliable prediction of learning indices was achieved by means of conventional 45 
polygenic score construction but also by modelling cross-trait and trait-specific effects of 46 
genetic variants. A latent factor of disorder risk as well as major depressive disorder 47 
conditioned on other traits were related to the acquisition of conditioned fear. Polygenic 48 
scores for short-term memory showed an association with safety cue learning. During 49 
extinction, genetic indices for neuroticism and verbal learning were predictive of CS+ and 50 
differential learning, respectively. While mediation effects depended on connectivity modality, 51 
prediction of fear involved all regions of interest. Expression-based scores showed no 52 
associations.  53 

Conclusions: Our findings highlight the utility of leveraging pleiotropy to improve complex 54 
trait prediction and brain connectivity as a promising endophenotype to understand the 55 
pathways between genetic variation and fear expression. 56 

Keywords: brain connectivity; fear learning; genetic disposition; individual differences; 57 
polygenic scores; skin conductance responses  58 
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Introduction  59 

Classical fear conditioning is to date the most extensively employed paradigm to study fear 60 
learning experimentally. Typically, acquiring conditioned fear consists of repeatedly pairing a 61 
neutral stimulus to an aversive one, the unconditioned stimulus (US), when both are 62 
presented closely in time. After enough iterations, the neutral stimulus elicits a conditioned 63 
fear response by itself and becomes a conditioned stimulus (CS+). Extinction learning, on the 64 
other hand, is thought to result of a new association between the previously associated 65 
stimuli in which their contingency no longer holds and thus expression of fear to the CS+ 66 
reduces in magnitude and frequency (1). Moreover, it is commonplace to include stimuli that 67 
are never paired with the US in ‘differential fear learning’ protocols that serve as a control 68 
condition against which to measure the difference in conditioned responses to the CS+. Fear 69 
responses to these ‘CS-‘ alone are occasionally studied as measures of safety cue learning 70 
as well (2,3). Throughout this article we focus on the skin conductance response (SCR), 71 
since it is by far the most common operationalization of fear expression when studying 72 
human participants. Clinical populations show marked differences in their expression of fear 73 
and rate of fear and extinction learning compared to groups of healthy controls (4). Hence, 74 
alterations in fear learning mechanisms are thought to be involved in the aetiology of several 75 
mood-, anxiety, and stress related mental disorders. Although many studies support this 76 
notion, the experimental results it is based on are highly heterogeneous (2,3) and partly 77 
contradictory (5). This diffuse picture could be attributed to sample assemblage or the 78 
experimental design, which makes result comparisons across studies difficult, but also to an 79 
inherent variability between individuals that cannot be explained by neither noise nor 80 
statistical confounds. While the former is a widely acknowledged concern, the latter is still 81 
poorly explored (6). The present work is an effort to advance knowledge with respect to 82 
interindividual differences in fear learning and extinction.  83 

Thanks to genome-wide association studies (GWAS) it has now become clear that a fraction 84 
of phenotypical variability in virtually all traits, including mental health, has its roots in genetic 85 
effects spread across a large number of loci over the entire genome (7,8). To make sense of 86 
this polygenicity, polygenic scores (PGS) have been proposed as a measure to harness the 87 
additive genetic effect on phenotypes. The approach involves aggregating the myriad of 88 
minute effects of single nucleotide polymorphisms (SNPs) into one single score that reflects 89 
the genetic liability towards a specific phenotype (9). Importantly, PGS are computed at the 90 
individual level, making the study of inter-individual differences possible. The genetic 91 
predisposition for various mental disorders and learning-related traits may have a 92 
nonnegligible impact on the expression of fear, even in the absence of symptoms of clinical 93 
relevance. Here, we put that idea to the test by assessing the predictive power of PGS in a 94 
pooled sample of healthy individuals.  95 

Although their predictive capabilities have been shown, conventional PGS still lack an insight 96 
into the biological mechanisms that lie inevitably between the polymorphisms and the 97 
behavioral traits upon which they are constructed. More recently, the expression-based 98 
polygenic score (ePGS) has been proposed as an adaptation to bridge the two in a more 99 
mechanistic matter (10). They are built under the assumption that polymorphisms likely affect 100 
gene expression of one or several genes in near proximity; genes which are functionally 101 
coregulated by networks that work toward specific biological pathways (10,11). Here, we 102 
used transcriptomic summary statistics from the Genome Tissue Expression Project (12) 103 
(GTEx) to implement two network-building strategies. Firstly, we extracted co-expression 104 
modules containing the DCC (deleted in colorectal cancer) gene due to its expression being 105 
instrumental for neurotypical development, axonal guidance and growth, and the regulation 106 
of white matter tract organization (13,14). Secondly, we attempted to identify networks 107 
involved in Hebbian learning and plasticity. Gene modules that reflect those processes may 108 
leave a durable mark on the brain’s structure and function, which could in turn affect 109 
associative learning.  110 
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  111 
Recent work uncovered an extensive overlap in the genetic basis between common mental 112 
disorders, functional (15), and structural connectivity of the brain (16,17). Thus, looking into 113 
the connectome for endophenotypes that link genetic risk with fear expression is a promising 114 
endeavor. Despite decades of research, well-studied brain regions still have not been fully 115 
characterized in their specific roles for different phases of fear memory processing. Besides, 116 
only a few regions have attracted the attention of researchers disproportionately, while others 117 
remain understudied. Specifically, the amygdala, the prefrontal cortex, especially its 118 
ventromedial subdivision (vmPFC) in humans, and the hippocampus have been established 119 
as the core components of the fear extinction network (18). However, a wealth of evidence 120 
propose the dorsal anterior cingulate (dACC) as a generator of homeostatic autonomic and 121 
behavioral responses according to the current interoceptive and emotional state represented 122 
therein (19). Furthermore, the cerebellum’s role on associative fear memory formation has 123 
been well characterized (20), but its involvement in fear extinction remained until very 124 
recently largely ignored (21). Similarly, the notion of the vmPFC being instrumental for 125 
successful extinction of conditioned fear is widespread (22) but that of its contributions to fear 126 
learning is not (23). In sum, recent work suggests that the core network should be expanded 127 
to include other critical regions due to their consistent involvement in both fear memory 128 
formation and extinction (19,24).  129 
Here, we carried out exploratory mediation analysis to test the hypothesis that individual 130 
differences in PGS, as well as DCC- and learning ePGS, predict differences in SCRs of fear 131 
acquisition and extinction, mediated by structural and functional connections within the 132 
human fear network.  133 

  134 

Methods  135 

This is a pre-registered work (https://osf.io/m34rd). See Supplements for any deviation from 136 
the pre-registration.   137 

Sample  138 

Sample data stems from a German multisite collaborative research center focused on the 139 
study of extinction learning (SFB1280; https://sfb1280.ruhr-uni-bochum.de/). This study was 140 
conducted in accordance with the Declaration of Helsinki, and each study protocol was 141 
approved by the local ethics review board of the respective study site (see Supplements).  142 
For the present study, only participants with available DNA, skin conductance, resting state 143 
functional- and diffusion-weighted magnetic resonance imaging (rs-fMRI and DW-MRI, 144 
respectively) data of sufficient quality were considered. These criteria reduced the total 145 
sample size to 153 (68 men) with data available for analysis. The pooled age range was 146 
1836 years with an average of 23.55 years and a standard deviation from the mean of 3.55 147 
years.  148 

Polygenic Scores  149 

We calculated conventional PGS by applying publicly available summary statistics of GWAS 150 
on major depressive disorder (25) (MDD), post-traumatic stress disorder (26) (PTSD) , 151 
anxiety disorders (27) (ANX), neuroticism (28) (NEURO), as well as cross-disorder risk (29) 152 
(CROSS) on the present sample’s genotype data (for details on sampling, genotyping, 153 
preprocessing, and imputation, see Supplements). Moreover, we included GWAS for verbal 154 
short-term memory (STM) and verbal learning (VL) (30) on the premise that genetic load for 155 
fundamental cognitive capabilities, such as memory, might affect neural system 156 
communication, since the integrity of these capabilities might affect associative memories 157 
(31). PGS were calculated following guidelines recommended for ‘LDPred-2 auto’ (32,33).  158 
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Trait-specific and Cross-trait PGS  159 

It has been convincingly shown that mental disorders share genetic risk factors (7,34). Thus, 160 
we set out to explore the impact of pleiotropic covariation on PGS performance by adjusting  161 
GWAS SNP-effects of each trait according to genetic correlations to others. LD Score 162 
Regression (35) v1.0.1 was used to identify significant FDR-corrected genetic correlations. 163 
Next, we applied multi-trait conditional and joint analysis (36) (mtCOJO) to extract disorder 164 
specific SNP-effects, conditioned simultaneously on all other covarying traits. The method is 165 
a summary statistics-based approach that uses Generalized Summary-data-based 166 
Mendelian Randomization to test for a putative causal association between two phenotypes. 167 
The output of this procedure is a new set of summary statistics which were then used to 168 
construct ‘conditioned PGS’ (PGSc), as described in the previous section. Conversely, we 169 
used genomic structural equation modelling (37) (genomic SEM) to also capture the 170 
overarching genetic effect across traits in common latent factors. Accordingly, we sought to 171 
find a structural model that best explains genetic variance inferred from the summary 172 
statistics by means of exploratory (EFA) and confirmatory factor analyses (CFA) on the 173 
genetic covariance- and sampling covariance matrix. Next, the best-fit model was expanded 174 
to estimate the effect of any given SNP on the identified latent genetic factors. SNPs in LD (r2 175 
> 0.2) with genome-wide significant SNPs, with p < 0.5*10-8 for genomic SEM’s Q statistic 176 
(37), 0.4 > MAF > 0.1, or with negative estimated variance were excluded from the resulting 177 
cross-trait summary statistics. The remaining estimates were used for latent-factor PGS 178 
construction with LDPred-2 auto.  179 
  180 

Expression-based Polygenic Scores  181 

GTEx gene read counts of 56 000 transcripts for the anterior cingulate cortex, frontal cortex, 182 
amygdala, hippocampus, and cerebellum served as the basis expression data for all ePGS. 183 
We used the R package GWENA (38) v1.6.0 with standard settings to construct weighted 184 
and unsigned co-expression networks and to identify modules of highly co-expressed genes 185 
on the preprocessed expression data. For each tissue, we curated a list with all genes within 186 
the module where DCC was allocated. Alternatively, we carried out over-representation 187 
analysis to identify modules that were significantly enriched in gene ontology (GO) terms with 188 
evidence of biological relevance for associative learning and listed the genes therein (see 189 
Supplements). Next, all cis- expression quantitative trait loci, and their respective effect on 190 
gene expression among all genes on the list formed the basis for ePGS construction in the 191 
final step. After clumping to account for LD (500kb window, R2<0.2), the overlap in remaining 192 
SNPs between GTEx and the present sample constituted the final set of variants to construct 193 
ePGS. The number of alternative alleles weighted by their gene-SNP association coefficient 194 
summed over all SNPs defined the individual measure of co-expressed DCC/learning 195 
network activity in a given brain region per participant. The final score used in mediation 196 
analyses was the sum of pairs of ePGS. Only ePGS from different regions of interest (ROIs) 197 
were summed together, yielding ten DCC-ePGS and ten learning-ePGS per subject.  198 

Structural and Functional Connectivity of Imaging data  199 

Information on acquisition, preprocessing, and additional analytical decisions concerning 200 
imaging data is provided in the Supplements.  201 

The partial correlation coefficient using a Ledoit-Wolf shrinkage parameter served as a 202 
measure of functional connectivity. It assesses more direct interactions between two brain 203 
regions and offers estimates with improved within-subject stability compared to marginal 204 
correlations (39), reflecting more trait-like aspects of brain organization. Having only five 205 
(bilateral) ROIs, we included the estimate of all ten possible ROI-pairings in downstream 206 
analyses.  207 
  208 
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Probabilistic tractography with FSL’s ProbtrackX (40) was performed to extract streamline 209 
counts as a measure of structural connectivity. Since the number of streamlines found 210 
between ROI pairs is not necessarily the same in opposite directions (e.g., the number of 211 
counts when streamlines start from the hippocampus and terminate in the amygdala is 212 
unequal to that of the same operation in the reversed direction) we opted for the average 213 
across both. As with functional connectivity, we obtained a bilateral estimate of counts for 214 
each of ten ROI pairs.  215 

Skin Conductance Responses  216 

Skin conductance data was analysed with the Psychophysiological Statistical Parametric 217 
Mapping (PsPM v6.0.0) toolbox (41). Participant-specific learning measures were obtained 218 
by first fitting a 2nd order polynomial regression on amplitude scores extracted from PsPM 219 
(see Supplements) as the dependent variable. Trial number, CS-type and their interaction 220 
were used as predictors. The model’s predicted value for each amplitude score was 221 
subtracted from the one succeeding it. The sum of all subtrahends represented the learning 222 
measure associated with a CS-type. Positive values indicate a net increase in SCR 223 
amplitudes with each additional trial, and a decrease in the case of negative scores. CS+ 224 
scores represent simple learning to conditioned fear stimuli, whereas CS- scores represent 225 
learning to conditioned safety stimuli. During acquisition, larger positive CS+ scores and 226 
negative CS- scores indicate more effective learning of conditioned fear and safety, 227 
respectively. During the extinction phase, fear is extinguished the more successfully the 228 
smaller CS+ scores are.  229 

By subtracting CS+ from CS- scores we obtained differential learning scores. These scores 230 
reflect an individual’s ability to discriminate the CS+ from the CS-. The greater the score’s 231 
absolute value, the greater the CS-discrimination. Larger difference values imply better 232 
differential learning during acquisition. Conversely, differences closer to zero indicate better 233 
learning throughout extinction training, i.e., learning that CS+ stimuli no longer precede 234 
aversive outcomes and thus formerly threat-associated stimuli tend to elicit SCRs like 235 
safetyassociated cues over time.   236 

Statistical Analysis  237 

All analyses were performed in R v4.2.2. We carried out exploratory mediation analysis by 238 
regularization using XMed (42) to identify a subset of variables with meaningful mediating 239 
effects. It is a process consisting of two phases that rely on elastic-net regression, which 240 
offers the advantage of reducing model complexity by eliminating irrelevant variables while 241 
also dealing with multicollinearity in the model. In the first phase, we set up a group-balanced 242 
5-fold cross-validation scheme to assess model generalizability. However, results are likely to 243 
be unstable due to the modest sample size. To counteract this, we imposed additional 244 
restrictions on how to declare a true mediation effect as detected. Our approach consisted of 245 
repeating the above procedure 1000 times, reassigning observations to different folds each 246 
time. Out of all iterations, the median of the standardized mediation effect estimates was 247 
extracted alongside its corresponding bootstrap-based standard errors. If the absolute value 248 
of the estimate’s bounds was greater than 0.001, that value was considered evidence of a 249 
true mediation effect. Due to the conservative penalization introduced by the elastic-net, 250 
coefficient estimates for all predictors may be underestimated. Thus, in the second phase, 251 
mediation models were fitted again on the subset of meaningful mediators and predictors 252 
identified in the first phase but without penalization using lavaan’s SEM (43) with the robust 253 
maximum likelihood estimator and robust standard errors to correct for coefficient 254 
underestimation.  255 

All PGS measures were treated as predictors. PGS, PGSc, and latent factor PGS were 256 
submitted to separate runs. All brain connectivity measures acted as mediators. The learning 257 
indices were regressed on the predictors and mediators separately for each experimental 258 
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phase and learning score. Likewise, mediators of different modalities were submitted to 259 
separate mediation models. All models were controlled for genetic ancestry (first five genetic 260 
principal components), age, sex, group- and study of origin. The above procedure applies 261 
exclusively to PGS. ePGS, however, were not analysed with XMed since we do not assume 262 
activity levels of DCC/learning ePGS to be related to connectivity metrics other than to the 263 
brain regions they are constructed from. Instead, we ran mediation models on the PROCESS 264 
macro v4.2 (44) for R for each predictor-mediator pair separately.  265 

  266 

Results  267 

Genetic associations & SNP-effect modeling:  268 

Each trait showed substantial genetic correlations with several others (Figure S1). 269 
Correlations among disorder risk summary statistics were all positive and ranged from 0.67 270 
to 0.84 (all pFDR < 0.001). The correlation between cognitive traits was estimated to be 0.89 271 
(pFDR < 0.001). Disorder risk and cognitive traits correlated negatively, with NEURO and 272 
PTSD showing a correlation to VL and STM; MDD showed a moderate negative association 273 
with STM only (all pFDR < 0.01, Figure S1). Accordingly, we carried out mtCOJO on each trait 274 
by specifying the above found links as covariates to obtain predictors free of confounding, 275 
i.e., PGSc.  276 

From genetic correlation analyses, the genetic covariance matrix was extracted and 277 
submitted to EFA to devise a genetic architecture for latent factors. A two-factor CFA model 278 
was specified based on the EFA results, where all disorders loaded onto one latent factor 279 
while both cognitive traits loaded onto another (henceforth ‘PSY-factor’ and ‘COG-factor’, 280 
respectively). Latent factors showed a moderate negative correlation (r = -0.21; Figure S2) 281 
The final configuration provided an excellent fit to the data (χ2(9) = 37.035; AIC = 63.035;  282 
CFI = 0.992; SRMR = 0.058) and a better fit than a single factor model (χ2(8) = 180.347; 283 
AIC = 204.347; CFI = 0.955; SRMR = 0.195). Consequently, a multivariate GWAS was run 284 
using this latent structure to estimate the effect of every SNP on each latent factor. After 285 
filtering, 360 681 PSY- and 357 172 COG-SNPs were available for ‘PSY-PGS’ and 286 
‘COGPGS’ construction, respectively.  287 

Exploratory mediation analysis:  288 

Figure 1 displays the main results of the exploratory mediation analyses. All three types of 289 
PGS were predictive of at least one learning index type, during either fear acquisition or 290 
extinction training. Furthermore, all five fear network ROIs played a role in some capacity.   291 

Conventional PGS construction of both STM and VL yielded predictions for CS- and 292 
differential learning, respectively. The former, however, only during fear acquisition and the 293 
latter only during extinction training. Structural connectivity between the vmPFC and the 294 
amygdala mediated the relationship between STM-PGS and CS- learning (Fig. 1A bottom). 295 
On the other hand, vmPFC-dACC structural connectivity mediated VL-PGS predictions of 296 
differential learning (Fig. 1B bottom). Regarding psychological traits, NEURO-PGS emerged 297 
as the sole relevant predictor of CS+ scores during extinction when jointly modelled with the 298 
functional connectivity between the dACC and the amygdala as an intermediary variable 299 
(Figure 1B top).   300 

By constructing PGS conditional on genetically related traits, PGSc for MDD, i.e. free of 301 
genetic confounds, showed an association with differential learning during fear acquisition 302 
training that was mediated by vmPFC-hippocampal functional connectivity (Fig. 1A top). The 303 
connection found for VL was not altered after conditioning, except for minor numerical 304 
differences in the individual regression paths (Fig. 1B bottom).  305 
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Regarding latent factor-based PGS, PSY- PGS were predictive of CS+ learning during 306 
acquisition due to a mediation effect of cerebello-amygdalar functional connectivity (Fig. 1A 307 
top). No significant mediation involving the COG-factor was observed.   308 

Since correlations among predictors ranged anywhere between faint and very strong (Figure 309 
S2), penalization dynamics could potentially fluctuate depending on the arrangement of 310 
variables submitted to elastic-net regressions. Thus, we further examined the effect of 311 
rerunning analyses with different predictor groupings. We included either only psychological, 312 
only cognitive, or each PGS individually and operated identically for PGSc or latent factor 313 
PGS. For PGSc analyses, we additionally specified models in which PGSc were tested 314 
alongside others for which there were no significant genetic correlations between their 315 
underlying traits, e.g., MDD-PGSc and STM-PGSc since MDD and STM summary statistics 316 
did not show a significant association (for an overview of model predictor combinations, see 317 
Supplements).   318 

We found that the choice of predictor grouping did not change the selection of significant 319 
regressors. Averaging across different groupings, significant mediations using PSY-PGS 320 
were detected 81.5% of the time after 1000 5-fold cross validation iterations, providing the 321 
most stable prediction models overall, followed by MDD PGSc- (68.6%), NEURO-PGS 322 
(65.1%), VL-PGS- (59.3%), VL-PGSc- (56.0%), and STM-PGS models (Figure 2). STM-PGS, 323 
however, predicted CS- learning only when tested alongside all other PGS. On the contrary, 324 
VL-PGSc predicted differential extinction learning when no predictor other than themselves 325 
or STM-PGSc were submitted to the model. A similar case was found for CROSS- and 326 
VLPGS. Both predicted CS+ learning during fear acquisition and extinction training, 327 
respectively, but only when alone. Furthermore, these last two measures did not meet the 328 
criteria to pass onto phase two of exploratory mediation as the boundaries of their median 329 
effect estimate were not above threshold. Finally, we also tested all model arrangements as 330 
above but using a random control predictor and/or a control mediator in addition (see 331 
Supplements). There was no instance of a control variable showing evidence of stable 332 
associations to real data (for an exemplary visualization, see Figures S3 and S4).  333 

Taken together, PGS(c) showed robust specificity to one mediator associated with fear 334 
learning or extinction. Note, however, that for every unit increase of any PGS(c), the 335 
models predicted only marginal changes in learning indices.  336 

ePGS construction and mediation analyses:   337 

DCC was allocated to modules ranging in size from 111 to 301 co-expressed genes in all 338 
GTEx tissues of interest. Remarkably, most modules of either ePGS type were significantly 339 
and specifically enriched for several nervous system and neuronal learning GO pathways. To 340 
name a few examples, ‘learning and memory’, ‘neuronal synaptic plasticity’, ‘synapse 341 
organization’, ‘chemical synaptic transmission’, ‘establishment of localization’, and ‘structure 342 
development’ were recurring biological processes (all pcorrected < 0.05). Moreover, cellular 343 
component terms specific to neurons such as ‘dendrites’, ‘postsynaptic membrane’, ‘dendritic 344 
spines’, ‘perikaryon’, ‘axon terminus’, among others, were overrepresented in these modules. 345 
For the cerebellar DCC-module, however, cellular compartments were cell-type non-specific 346 
and biological processes were not always focused on the nervous system. Table S2 347 
summarizes WGCNA results, whereas Figures S5-S14 summarize overrepresentation 348 
analyses performed on each module selected for ePGS construction.  349 

In sum, ePGS were based on SNPs affecting expression of gene networks with affinity for 350 
neuronal structure, organization and synaptic plasticity. Regardless, no significant mediation 351 
was found (all p > 0.05). It should be noted, however, that some direct paths, frequently 352 
those involving cerebello-hippocampal and amygdalo-hippocampal ePGS, showed an 353 
association with various learning indices at a nominal p-value level, but not after correcting 354 
for multiple comparisons (all pcorrected > 0.05).  355 
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  356 

Discussion  357 

Susceptibility to fear learning and extinction is a highly heterogeneous, yet heritable trait 358 
(45,46). Here, we show that genetic disposition for mental disorders in a non-clinical 359 
population as well as genetic indices of cognitive capabilities are (indirectly) associated with 360 
individual variation in fear and extinction learning. As discussed below, constructing PGS 361 
while accounting for genetic interdependencies among traits improved prediction in some 362 
instances. Our results suggest an involvement of all fear network regions in at least one 363 
pathway connecting genetics and fear learning. Both functional and structural connectivity 364 
featured during fear acquisition and extinction training. Simple learning of the conditioned 365 
fear stimulus (CS+) was most reliably predicted via functional connectivity, whereas 366 
differences in safety cue (CS-) and differential learning (CS+ vs. CS-) were mediated by 367 
structural connection strength.  368 

Several PGS implementations have shown the benefit of modelling pleiotropic associations 369 
among traits to improve prediction at the phenotype level (e.g., SNP effects of schizophrenia 370 
and bipolar disorder jointly modeled to predict the corresponding case-control status (47)). 371 
The reverse operation, i.e., estimation of trait-specific SNP effects conditioned on all others, 372 
leads to similar results (48). Here we show that the predictive power, occluded in marginal 373 
GWAS effect estimates, can be unveiled by leveraging pleiotropy. This was showcased by 374 
PSY-PGS and MDD-PGSc. Predictions including PGS derived from this PSY-factor yielded 375 
the most robust effect detection overall. Specifically, PSY-PGS showed an association with 376 
the acquisition of conditioned fear, mediated by partial correlations of BOLD responses at 377 
rest between the amygdala and the cerebellum. Higher PSY-PGS were associated with net 378 
increases in CS+ responding over time mediated via amygdalo-cerebellar functional 379 
connectivity. This finding adds to the growing body of evidence that point to the cerebellum 380 
and amygdala interacting to foster emotional control (49). High genetic load for mental 381 
disorders may predispose individuals to develop fear responses to aversion-coupled stimuli 382 
more rapidly by altering functional communication between these areas.   383 

Moreover, higher MDD-PGSc predicted higher CS+ responding when modeling vmPFC-384 
hippocampal functional connectivity as an intermediary variable. The indirect effect was 385 
positive because this mediator was positively associated to both MDD-PGSc and CS+ 386 
learning. Recent perspectives propose that the vmPFC prepares individuals in the face of 387 
anticipated danger, such as during the acquisition of conditioned fear (23,50). Neural events 388 
in the hippocampus are believed to encode context-related information of new episodic 389 
memory traces (51). Together, the prefrontal-hippocampal circuitry computes stimulus value 390 
to estimate the degree of threat tied to a stimulus (52). A positive association between MDD 391 
PGSc and functional hippocampal-prefrontal covariation might appear surprising at first, 392 
given that past research has shown hypoconnectivity between these areas in depression 393 
(53,54) as well as in anxiety- and stress-related symptomatology (55,56). Importantly, these 394 
disorders are highly comorbid and share a substantial portion of genetic influences (57). 395 
Incongruency with past research might be thus attributable to the disentanglement of MDD 396 
SNP effects from those of comorbid traits carried out here.  397 

Interestingly, genetic risk for neuroticism showed a relationship to CS+ learning during 398 
extinction training via dACC-AMY functional connectivity. Functional dACC connectivity with 399 
the amygdala supports successful updating of fear associations (58). A failure to extinguish 400 
such associations has been linked to compromised integrity and hyperactivity of the dACC 401 
(59) and to increased AMY-dACC connectivity after fear acquisition training (60). Our models 402 
predicting more positive CS+ learning during extinction (i.e., inefficient extinction learning) for 403 
individuals with higher functional connectivity at rest are thus well in line with past findings 404 
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and suggest high trait connectivity as a vulnerability factor for successful extinction of 405 
aversive memories. Counterintuitively, individuals at greater genetic risk for neuroticism 406 
tended to have lower functional connectivity estimates, which in turn led to more efficient 407 
extinction. Research by Pace-Schott et al. (61) demonstrated that decreased connectivity 408 
between the amygdala and ACC indeed corresponded to higher neuroticism, implying a 409 
detriment in regulatory neural mechanisms of negative affect (ACC exerting top-down control 410 
over amygdala activity) in individuals with elevated neuroticism. In turn, this could provide an 411 
unexpected advantage of more efficient extinction learning, as our results suggest. Moreover, 412 
neuroticism showed large genetic correlations to all disorders and the largest loading to the 413 
PSY-factor in our analyses, suggesting that individual variation on the latent factor most 414 
closely relates to variation in neuroticism. It is reasonable to presume that due to the shared 415 
architecture of neuroticism with other disorders, this trait captures variation in imaging and 416 
physiological markers much like the combined genetic liability of internalizing disorders. This 417 
interpretation finds support in other investigations that position neuroticism as the binding 418 
common denominator among internalizing disorders at the phenotypic level since genetic 419 
factors between neuroticism and internalizing disorders overlap greatly, though not entirely 420 
(62,63).  421 

Notably, both PGS for memory capabilities predicted fear learning. An increased genetic 422 
disposition for short-term memory was associated with a net tendency for SCRs to decrease 423 
after each additional CS- stimulus presentation during fear acquisition protocols, depending 424 
on the strength of structural connections between the vmPFC and the amygdala. 425 
Physiological responses to the CS- increased with greater vmPFC-AMY structural 426 
connections. Conversely, STM-PGS were inversely related to connectivity between these 427 
ROIs. During the acquisition of fear, inhibitory efferents from the amygdala repeal the 428 
otherwise suppressive effect of the vmPFC on the amygdala-orchestrated expression of fear 429 
to favor the formation of CS-US associations within its basolateral subnuclei. The amygdala 430 
then initiates the propagation of a cortex-wide signal of several neuromodulatory systems to 431 
increase arousal and attention towards cues that predict danger (64,65). More extensive 432 
structural connections might then correspond to stronger amygdalar inhibitory influences on 433 
prefrontal regulation of excitability and a more disproportionate autonomic response to stimuli 434 
not linked to an aversive outcome. Genetic variation that promotes better performance in 435 
short-term memory tasks might help mitigate the detrimental effect of such predisposition on 436 
safety learning. On the other hand, more efficient differential learning during extinction 437 
training was indirectly related to lower (conditioned) PGS for verbal learning since the 438 
mediation path involving dACC-vmPFC structural connectivity was composed of antagonistic 439 
effects. Specifically, we found that stronger structural connections between the dACC and the 440 
vmPFC predicted a decrease in CS+/CS- learning differences, i.e., better differential 441 
extinction learning. Past research has shown that white matter integrity in the cingulum, a 442 
major fiber passing through these areas and connecting both to subcortical structures like the 443 
amygdala and the hippocampus, is positively related to (early) extinction learning (66). Thus, 444 
a greater number of streamlines between these cortical areas might reflect a better 445 
preserved pathway that facilitates the exercise of their canonical functions during extinction in 446 
interaction with other brain regions: stimulus value appraisal and fear response inhibition 447 
(67). Higher VL-PGS(c), however, were related to lower structural connectivity, ultimately 448 
slowing down extinction learning. This is surprising given that positive associations between 449 
structural connectivity and individual differences in memory performance are ubiquitous in 450 
the brain (68), including the superior cingulate bundle (69). It should be noted that mediation 451 
effects for cognitive traits were the least robust and depended on the exact combination of 452 
predictors in the model. CS- learning was linked to STM-PGS when every other predictor 453 
was submitted for analysis simultaneously, but not when STM-PGS were tested alongside 454 
VL-PGS or alone. Similarly, VL-PGSc allowed for above threshold predictions but not when 455 
competing against all regressors. Caveats notwithstanding, these results find some support 456 
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for the idea that (genetic disposition for) memory related higher-order cognitive faculties may 457 
aid the formation and modification of CS-US contingencies.  458 

Concerning ePGS analyses, the identified gene network modules were finely tuned for 459 
associative learning pathways at the molecular and cellular level. Despite biological 460 
plausibility, ePGS showed no evidence of association to learning, directly or indirectly. 461 
Though some direct paths from ePGS to learning hinted at a covariation between both, these 462 
analyses did not survive multiple comparison corrections. Thus, null results suggest that 463 
while ePGS may be related to fear conditioning, connectivity of the fear circuitry may not be a 464 
relevant intermediate variable.  465 

The focus of the present work was on brain connectivity at rest, as opposed to task-based, 466 
on the premise that genetic composition partially affects trait-like measures, e.g., BOLD 467 
signal fluctuations in resting-state networks (70–72). However, future studies could examine 468 
the effect of polygenic markers on neural activation during fear extinction experiments, given 469 
previously reported associations between genetic variability and in-task modulation (73,74). 470 
Moreover, other imaging-based endophenotypes are needed to further characterize the 471 
intermediary pathway between polygenic predictors and learning, as evidenced by non-zero 472 
direct effects that point at variance yet to be explained.  473 

Conclusions  474 

In the present work we set out to identify genome-wide distributed contributions to fear 475 
expression and found that additive genetic load for mental disorders, neuroticism, and 476 
memory-related cognitive capabilities have a rather modest, yet non-negligible impact, on the 477 
connectivity of the human fear circuitry, which in turn relates to individual fear learning and 478 
extinction behavior over time. Further, we conclude that while genetic correlations among 479 
traits are pervasive, these can be harnessed to better portray the relationship between 480 
genetic variation, neural systems, and ultimately, behavior in health and disease.  481 
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Figure 1. PGS predic�on of acquisi�on and ex�nc�on of condi�oned fear is mediated by structural and func�onal 699 
connec�vity. Predictors and mediators that showed associa�ons with CS+, CS- or differen�al learning during fear 700 
acquisi�on (A) and ex�nc�on training (B). All coefficients displayed on top of arrows (standard errors in parentheses) 701 
are corrected for underes�ma�on during elas�c-net regression by re-running the media�on models without 702 
regulariza�on and keeping only significant regressors iden�fied during the first run (see Methods). Values in bold next 703 
to doted arrows represent the indirect effects. The indirect effect is the result of mul�plying coefficients together 704 
from paths poin�ng towards- and coming from mediators (short solid arrows). Each total effect is the sum of the 705 
es�mates for the direct (values over long solid arrows) and indirect paths with the same superscript (*, §, $, &). Note 706 
that during fear acquisi�on no model predicted differen�al learning, and during fear ex�nc�on none predicted CS- 707 
learning. AMY, amygdala; ACC, dorsal anterior cingulate cortex; CEB, cerebellar nuclei; FC, func�onal connec�vity; 708 
HIP, hippocampus; MDD, major depressive disorder; NEURO, neuro�cism; PFC, ventromedial prefrontal cortex; PGS, 709 
polygenic score; PGSc, condi�oned polygenic score; PSY, psychological latent factor; SC, structural connec�vity; STM, 710 
(verbal) short-term memory; VL, verbal learning.  711 
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Figure 2. Media�on effects are robust to model specifica�ons. Despite varying predictor combina�ons and sample 
composi�ons set up for analysis, the same PGS consistently showed significant effects specific to one mediator during 
phase 1 of exploratory media�on, leaving predictor and mediator selec�on for subsequent phase 2 models unchanged. 
Each panel corresponds to one path diagram in Figure 1. Y- axes display effect sizes, while mediators (i.e., ROI-pairs) are 
placed on the x-axis. Bars represent the es�mated median effect found in a repeated cross-valida�on scheme with 1000 
repeats. Each bar within each mediator represents the result of a different grouping of predictors (see main text and 
Supplements). Dots on bars are effect es�mates from individual cross-valida�on itera�ons (only 10 are displayed for 
visualiza�on purposes). Color intensity represents the frequency of effect detec�on. Black whiskers indicate the 
bootstrap-based standard error. Black and blue lines on the color scales represent the mean and range of detec�on 
frequency for significant mediators, respec�vely. To see which learning indices and connec�vity modali�es were 
included in the models, see Figure 1. Red doted lines mark the 0.001 threshold beyond which effects are declared 
present in the data. ACC, dorsal anterior cingulate cortex; AMY, amygdala; CEB, cerebellar nuclei; COG, COG latent 
factor (see main text); HIP, hippocampus; MDD, major depressive disorder; PFC, ventromedial prefrontal cortex; PGS, 
polygenic score; PGSc, condi�oned polygenic score; PSY, PSY latent factor (see main text); STM, (verbal) short-term 
memory; VL, verbal learning.  
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