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Abstract 28 

The abilities to acquire new information and to modify previously learned knowledge are critical in 29 

an ever-changing world. However, the efficacy of learning is notably variable among individuals, with 30 

extinction learning being the epitome of such variability. Abundant studies have identified a core 31 

network of brain regions including amygdala, hippocampus, dorsal anterior cingulate cortex (ACC), 32 

ventromedial prefrontal cortex (PFC) and, more recently, the cerebellum, as key players in learning 33 

and extinction. Yet, the precise interactions within this network and their relationship to individual 34 

learning abilities and extinction have remained largely unexplored. In the present study, we 35 

examined how functional (FC), effective (EC), and structural (SC) connectivity patterns in the core 36 

learning network allow predicting individual differences in the efficacy of learning, extinction, and 37 

renewal. Analysing a large dataset of over 500 participants across a multitude of paradigms, our 38 

results revealed that FC predicted better acquisition, with a central role of ACC and hippocampus, 39 

whereas SC, involving ACC and amygdala, predicted higher levels of extinction learning. EC results 40 

suggested a predominantly inhibitory coupling among core learning network nodes, with paradigm-41 

specific EC connectivity patterns predicting learning. Our predictions not only generalised between 42 

fear and cognitive predictive learning paradigms but were also successful in predicting learning from 43 

task-related FC and simulated data. Together, these results describe the multimodal neural 44 

determinants of learning, extinction, and renewal, and may inform individualised interventions for 45 

affective disorders based on neural connectivity patterns. 46 

Keywords: extinction learning, MRI, brain connectivity, individual differences 47 
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Introduction 49 

The ability to learn from experience is a hallmark of every living system, from humans down to 50 

single-cell organisms. This ability differs strongly between individuals: While some are able to 51 

acquire new information quickly and display steep learning rates, others are much slower1. These 52 

differences concern abilities as widespread as the formation of new episodic memories, the 53 

development of novel practical skills, or the gradual learning about the putative outcome of actions. 54 

Since our world is constantly changing, it is equally important to cease responding to previously 55 

memorised information once it is no longer valid. This process is called extinction learning and 56 

involves the acquisition of two distinct memory traces. The first represents the initial association that 57 

is largely left intact, while the second is an association of inhibitory nature that suppresses the 58 

activation of the first trace2. These inhibited associated responses can return under diverse 59 

conditions and so turn into invasive components of psychopathology3. The societal and clinical 60 

relevance of extinction learning, and its associated problems can hardly be overestimated. According 61 

to Craske et al., more than 60 million European Union citizens suffer from anxiety disorders4. 62 

Importantly, extinction learning is itself strongly context-dependent, since presentation of a 63 

conditioned stimulus (CS) outside its extinction context tends to induce return of the conditioned 64 

response (CR), a phenomenon known as renewal2.  65 

The ability to extinguish previously acquired information and the propensity for renewal show 66 

pronounced individual differences, which may not only account for a person’s ability to flexibly 67 

update knowledge but also their vulnerability or resilience to psychopathology, specifically regarding 68 

anxiety disorders5. It is likely that these differences reflect a combination of both stable (trait) and 69 

variable (state) measures. For example, the ability to acquire novel and to update existing 70 

information, as well as the re-occurrence of extinguished memory traces, depend on age6,7, sex8,9, 71 

and personality traits such as trait anxiety and sensation seeking10,11, but are also modulated by 72 

acute psychosocial stress and/or state anxiety
12,13

. Understanding the neural determinants of 73 

individual differences in learning, extinction, and renewal, is thus not only a window into the 74 

mechanisms of extinction but may prove useful in our understanding of disorders that affect this 75 

ability and their potential treatments. 76 

The brain structures involved in fear conditioning are relatively well-known. Animal and human 77 

research converge towards the idea that the amygdala (AMY) stores the associations between the CS 78 

and the unconditioned stimulus (US), whereas the hippocampus (HIP) encodes context 79 

information14,15. The dorsal anterior cingulate cortex (ACC1) and ventromedial prefrontal cortex (PFC) 80 

have prominent roles in fear appraisal and safety learning, respectively16. More recently, it has also 81 

been proposed that the cerebellum (CEB) provides predictions of upcoming sensory events during 82 

associative tasks
17

.  83 

The mechanisms of extinction learning putatively differ from those supporting initial learning and 84 

may be more complex since they require the formation of a second associative trace of an inhibitory 85 

nature. Moreover, despite the apparent ubiquity of learning and extinction in both fear conditioning 86 

and cognitive predictive learning contexts, it remains an open question whether these require the 87 

same or different neural determinants. For instance, whereas HIP and PFC support context-88 

dependent extinction learning in both fear18–20 and predictive learning21–23 paradigms, the 89 

involvement and role of the AMY may be less universal than previously assumed24,25: Suppression of 90 

                                                           
1
 For the dorsal anterior cingulate cortex and ventromedial prefrontal cortex we chose the acronyms ACC and 

PFC respectively, to be consistent with other three-letter labels (AMY, HIP, CEB) and avoid excessive lettering in 

ROI pair labels in figures and tables. 
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AMY activity by PFC enables extinction following aversive learning14, whereas AMY activity increases 91 

during extinction in both appetitive
26

 and predictive learning
21

 tasks, presumably related to salience 92 

or novelty processing. Thus, even though accumulated evidence points to the involvement of a 93 

similar set of brain regions in various conditioning-based learning paradigms, the macroscale 94 

network connectivity patterns that support these different kinds of learning remain unclear. 95 

Furthermore, there exists a paucity of studies devoted to investigating individual differences in 96 

learning efficacy from inter-areal connectivity patterns. 97 

Resting-state fMRI (rs-fMRI) has proved to be a reliable and convenient technique to measure 98 

intrinsic brain connectivity in large participant samples. Indeed, several studies have successfully 99 

predicted performance in various (non-)cognitive traits, as well as vulnerability or resilience to 100 

mental disorders
27–29

, from brain connectivity patterns. Still, the extant studies examining brain-101 

behaviour relationships using rs-fMRI have mostly focused on functional connectivity (FC). While this 102 

method appears to reflect inter-regional interactions between local neural assemblies30, it does not 103 

convey information about the direction of these interactions. By contrast, recent advances in 104 

effective connectivity (EC) now allow the characterization of causal interactions among brain areas 105 

at rest31, which may provide important complementary information regarding the complex 106 

relationship between brain connectivity and individual differences in learning, extinction, and 107 

renewal. Even though correlation-based FC and EC are mathematically related, they differ 108 

fundamentally in that FC only accounts for linear, undirected statistical dependencies, whereas EC 109 

measures the directed causal influence that one brain region exerts over another32,33. 110 

In addition to functional and effective interactions, pronounced individual differences have been 111 

found in patterns of structural connectivity (SC) that reflect the integrity and effectivity of axonal 112 

information transfer. SC can be quantified using tractography, a technique that generates 113 

streamlines as a proxy for white matter fibre tracts across brain regions34. FC and SC are known to be 114 

related to some extent35,36, but this relationship is complex. FC-SC correlations have been shown to 115 

depend on the specific network connections being examined37, and the existence of strong FC in the 116 

absence of direct structural connections suggests that FC between two regions may rely on SC via a 117 

common third region
38

. 118 

The relationship between EC and SC is even less clear, although recent evidence suggests that 119 

constructing structurally-informed dynamic causal models (DCMs) of EC can outperform structurally-120 

naïve DCMs by drastically improving group-level model evidence
39

. Nevertheless, it remains unclear 121 

how these two types of connectivity compare in terms of predicting cognitive variables. In summary, 122 

cognition depends on a complex interplay between FC, EC, and SC, which has prompted researchers’ 123 

calls for an integrative approach40,41. 124 

In the present study, we set out to investigate not only the neural connectivity patterns supporting 125 

learning and extinction but also whether these patterns generalise across different types of learning 126 

paradigms. As mentioned above, various forms of learning, such as fear learning and cognitive 127 

predictive learning, appear to rely on overlapping neural circuitry, as both involve acquiring and 128 

updating associative contingencies. While distinct paradigms may recruit additional regions based on 129 

task-specific demands (e.g., the piriform cortex in olfactory conditioning), a core learning network 130 

appears to be commonly engaged across different forms of associative learning. By comparing fear 131 

learning and cognitive predictive learning, our analysis aimed to identify this shared neural 132 

architecture and its role in learning and extinction. We analysed FC, EC and SC patterns within this 133 

network in a new large multi-center dataset of over 500 individuals from a collaborative project 134 

involving different types of learning and extinction (see Fig. S3 and Supplemental text: Experimental 135 

paradigms). 136 
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 137 

138 
Figure 1. Number of datasets, regions of interest and connectivity estimates. (A) Number of resting-state 139 

fMRI (rs-fMRI) and diffusion weighted imaging (DWI) datasets acquired in each group of the consortium 140 

[sfb1280.ruhr-uni-bochum.de].  Blue and red columns indicate whether learning was assessed via skin 141 

conductance responses (SCR) or behavioural ratings, respectively. Striped and plain columns reflect fear 142 

conditioning or cognitive predictive learning paradigms, respectively. (B) ROIs used in the present study. All 143 

subject-specific ROIs were extracted from an automatic parcellation/segmentation using FreeSurfer (top left). 144 

For the cerebellum, the three cerebellar nuclei (fastigial, interposed and dentate nuclei) were extracted using 145 

the SUIT package (top middle; see Methods) and combined into one cerebellar ROI. For probabilistic 146 

tractography, surfaces of the dorsal anterior cingulate and ventral prefrontal cortices were used instead of their 147 

volumetric counterparts (top right). (C) Average functional connectivity between all pairs of ROIs. Functional 148 

connectivity was calculated across the entire sample based on a composite metric (see Methods). Greater FC 149 

was observed for the connections HIP - AMY and HIP – PFC. (D) Average structural connectivity between all 150 

pairs of ROIs. SC values are based on streamline counts across the entire sample. As expected, the connection 151 

HIP – AMY showed a disproportionately larger number of streamlines, followed by ACC – PFC and AMY – PFC 152 

connections. (E) Average effective connectivity based on spectral dynamic causal modelling (spDCM) estimates 153 

of directed connectivity among our ROIs (top: excitatory connections; bottom: inhibitory connections). (F) The 154 

winning model for effective connectivity showing the spDCM estimates of directed connectivity among our 155 

regions of interest computed using Parametric Empirical Bayes and Bayesian Model Averaging. rs-fMRI=resting-156 
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state functional magnetic resonance imaging; DWI=diffusion-weighted imaging; EDA=Electrodermal activity; 157 

ACC = Dorsal anterior cingulate cortex; AMY = Amygdala; CEB = Cerebellar nuclei; HIP = Hippocampus; PFC = 158 

Ventromedial prefrontal cortex. 159 

 160 

 161 
Figure 2. Learning estimates. (A) Group-level averages of SCR amplitudes in individual CS+ (red) and CS- (blue) 162 

trials during acquisition (left), extinction (middle) and renewal (right). (B) Illustration of fixed-effect polynomial 163 

regression on the SCR data of an exemplar participant. After fitting the model, a unique learning score was 164 

computed comparing CS+ and CS- trials. (C) Average estimates of learning based on D and E for the entire 165 

sample (see Fig. S21 for the separate studies). (D) Multilevel generalised linear model using a logit link function 166 

to model behavioural ratings in predictive learning paradigms (exemplar participant). Individual parameter 167 

estimates were extracted from each participant and the expected rate of success after all 8 trials was 168 

computed. (E) Individual (blue: negative slopes; red: positive slopes) and group (black line) learning slopes 169 

estimated from the multilevel logistic regression in (D). CS+=conditioned stimulus (reinforced); CS-=conditioned 170 

stimulus (non-reinforced); SCR=skin conductance responses.  171 

 172 

Results 173 

We carefully optimised and homogenised data acquisition pipelines across centres, resulting in high 174 

test-retest reliability of functional and structural connectivity measures using either ROIs from the 175 

the whole brain or only the selected ROIs from our study (all Cronbach’s alpha > .80; Figure S1-2). We 176 

then acquired rs-fMRI and DWI data from a large group of participants (rs-fMRI: N=509; DWI: N=463) 177 
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who conducted different fear and cognitive acquisition and extinction learning paradigms (Figure S3; 178 

Methods; Supplemental Methods: Experimental paradigms). 179 

Multimodal connectivity in the core learning network 180 

For the analysis of FC, we computed a composite score (concatenation of nine different metrics; 181 

Methods; Table S4) focusing on ipsilateral connections (e.g., left AMY - left HIP), with the exception 182 

of the CEB, given that (neo-)cerebellar regions are connected with the contralateral cerebral cortex. 183 

A mixed-effects model (participant nested within study) using FC as the outcome variable and ROI-184 

pair as predictor revealed greater FC for HIP-AMY than any other connection (all ts > 36, psFDR < .001), 185 

followed by HIP-PFC (all ts > 26, psFDR < .001) and AMY-PFC (all ts > 12, psFDR < .001; see Table S9 for 186 

remaining comparisons). This pattern was observed in both hemispheres (Fig. 1C).  187 

The general pattern of SC was similar to what we observed for FC (Fig. 1D). A corresponding mixed-188 

effects model using streamlines as outcome variable revealed a disproportionate number of 189 

streamlines for the HIP-AMY, ACC-PFC, AMY-PFC and HIP-PFC connections (in this order) relative to 190 

all others (all zs > 12, pFDR < .001; see Table S10 for the remaining connections).  191 

The EC analyses showed that the core learning network was mostly characterized by inhibitory 192 

connections, with only a few excitatory connections, most notably, the bidirectional HIP-AMY 193 

connection (Fig. 1E; see also Fig. 1F for the group-level results using a Parametric Empirical Bayes 194 

model). 195 

Since the same modelling approach was used for FC and SC, we could also compare the relative 196 

strength of connectivity for each connection between these two modalities (see Methods). This 197 

analysis showed that relative FC between HIP-PFC and AMY-PFC was greater than relative SC (ts > 198 

8.30, pFDRs < .001), whereas for HIP-AMY, relative SC was greater than relative FC (ts > 17.15, pFDRs < 199 

.001). Thus, despite their overall similarities, relative FC and SC values differed for some ROI pairs 200 

(Fig. S11). 201 

To examine whether the different types of connectivity were related to each other, we computed 202 

Pearson correlations between FC-EC, FC-SC and EC-SC on each individual connection (Fig. S12). 203 

Interestingly, functional connectivity between several connections was significantly correlated with 204 

the respective effective connectivity patterns as well as with SC between these regions. By contrast, 205 

we did not observe any correlation between SC and EC connection strengths even at uncorrected 206 

thresholds. Thus, while individual differences in FC were partially determined by (putatively more 207 

hard-wired, i.e. trait-like) differences in streamlines, these structural connectivity differences did not 208 

correspond to individual differences in EC. 209 

 210 

Learning measures 211 

Learning during acquisition, extinction and renewal was estimated separately for each study and 212 

experiment. For studies that collected skin conductance response (SCR) data, PsPM was used to 213 

estimate trial-by-trial SCR values, while participant ratings were used in behavioural-only studies (see 214 

Methods). 215 

For the group-level analysis, we included the initial eight trials (acquisition) and seven trials 216 

(extinction and renewal), which corresponded to the number of trials of the subject with the least 217 

number of trials. We observed a significant interaction of SCR data between time (i.e., trials) and 218 

condition (CS+ cs. CS-) for all experimental phases, indicating steeper increases in amplitude for CS+ 219 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2025. ; https://doi.org/10.1101/2025.05.04.651880doi: bioRxiv preprint 

https://doi.org/10.1101/2025.05.04.651880
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

 

vs. CS- during acquisition (t = 3.85, pFDR < .001) and steeper decreases for extinction (t = -3.65, pFDR < 220 

.001) and renewal (t = -6.28, pFDR < .001) (see Fig. 2A). 221 

For the extraction of subject-specific variables of learning, extinction and renewal, we used all trials 222 

available in each participant in either a subject-wise polynomial regressions for SCR data (studies S1, 223 

S2, S3, S5, S6; Fig. 2B) or a generalised linear mixed-effects model using a logit link function for 224 

behavioural ratings (study S4; Fig. 2D). Using these individual-level estimates of learning, we 225 

observed a much larger estimate for CS+ than CS- in the acquisition phase, indicating greater learning 226 

for CS+ trials, and the opposite pattern for extinction and renewal. Permutation testing on these 227 

learning scores confirmed that condition differences during all phases were significantly larger than 228 

would be expected by chance (Fig. 2C; acquisition: t = 5.69, pFDR < .001; extinction: t = -3.80, pFDR < 229 

.001; renewal: t = -4.99, pFDR < .001). 230 

Similarly, in the behavioural studies learning was highly significant at the group level during both 231 

acquisition (z = 19.75, pFDRs < .001) and extinction (z = 16.11, pFDRs < .001), with only 2 out of 180 232 

individuals showing slight negative trends (see Fig. 2E). Not surprisingly, individual estimates of 233 

learning were again significantly above chance levels (ts > 5.40, pFDRs < .001; Fig. S15). Trial-by-trial 234 

changes in renewal were not significant (z = -.74, pFDR > .10), but the probability of making at least 235 

one renewal response (giving the same response as that given during acquisition) was still significant 236 

(t = 3.46, pFDR < .001). Further analyses showed that even though acquisition and extinction were 237 

correlated (r = .16, pFDR < .001; Fig S16), the amount of shared variance was very limited (≈ .03), 238 

suggesting that different factors may account for individual differences in these two phases. The 239 

correlation between acquisition/extinction and renewal was not significant, rs = -.06/-.08, psFDR > .10. 240 
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 241 

Fig. 3. Predicting individual differences from brain connectivity. (A) Significant coefficient estimates from the 242 

LASSO model for the entire sample: FC only predicted acquisition, SC only predicted extinction learning, EC 243 

only predicted renewal. (B) Coefficient estimates were obtained using a ridge regression model for different 244 
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groupings in the acquisition phase (see Fig. S23-S25 for lines of best fit for all connections). Ridge regression 245 

was chosen to provide estimates for all connections, as LASSO sets irrelevant coefficients to zero. Significant 246 

connections identified by LASSO are marked with stars (Ridge and non-zero LASSO coefficients were highly 247 

correlated, r = .87, p < .001). Only connections that were significant in at least one grouping for any 248 

connectivity type are displayed. (C) Same as (B) but for the extinction phase. (D) Same as (B) but for the 249 

renewal phase. (E) Bars represent the estimated marginal means for the number of times each ROI appeared in 250 

a significant connection across Monte-Carlo resampling iterations, where LASSO was run on random subsets of 251 

observations. This analysis assessed the robustness of each ROI as a “hub” within the fear and extinction 252 

network. Doughnut charts below each type of connectivity indicate how many times each ROI appeared in the 253 

original LASSO models (i.e., in B-D), providing a direct comparison between resampling-based estimates (bar 254 

plots) and the original results (doughnut charts). FC = Functional connectivity; SC = Structural connectivity; EC = 255 

Effective connectivity. All=All studies (S1,S2,S3,S4,S5,S6); FL=Fear Learning studies (S1,S2,S3,S5,S6); FLc=Fear 256 

Learning classical paradigm (S2,S3); PL=Predictive Learning studies (S4); FLr=Fear Learning renewal study (S2); 257 

PLr=Predictive learning renewal study (S4); Both=Both renewal studies (S2, S4). ACC=Dorsal anterior cingulate 258 

cortex; AMY=Amygdala; CEB=Cerebellar nuclei; HIP=Hippocampus; PFC=Ventro-medial prefrontal cortex. 259 

 260 

Prediction of individual differences 261 

We next investigated whether and how the three different types of connectivity (FC, SC, and EC) 262 

related to individual differences of learning, using a LASSO regression model (see Methods). 263 

 264 

Acquisition 265 

For acquisition, the relevant functional connections were lCEB-rPFC, lHIP-lPFC, rACC-rPFC, rAMY-266 

rACC, rCEB-lHIP as well as bilateral HIP-ACC (Fig. 3B; using traditional p-values, these connections 267 

were all significantly above chance after correction for multiple comparisons, see Fig. S22). Results 268 

were similar for most combinations of individual studies (see also Fig. S27). In addition to these FCs 269 

that were relevant for learning across all studies, three FCs were only predictive in PL studies (lACC-270 

lPFC, lAMY-lPFC and lCEB-rHIP). Note that it is possible for a connection to be identified as significant 271 

when data are pooled across all studies, even it was not significant in any individual study (see Fig. 272 

S23). 273 

Neither structural nor effective connections significantly predicted learning for the entire sample. 274 

However, we did observe distinctive predictive connections for FL and PL paradigms when analysed 275 

separately. Regarding EC, disinhibition of the inhibitory connections lAMY→lPFC, rCEB→lAMY and 276 

bilateral HIP→AMY predicted acquisition in PL studies. In contrast, a more pronounced excitatory 277 

connection lCEB→rAMY predicted FL. For FLc, there was also an interesting association between 278 

acquisition and disinhibition of the inhibitory connection ACC→AMY, as well as increased PFC→AMY 279 

inhibition with greater acquisition. Thus, fear learning benefited from higher AMY inhibition by PFC 280 

and from AMY disinhibition by ACC. With regard to SC, only the connections lCEB-rPFC and rAMY-281 

rPFC in PL were significant predictors. 282 

Even though our results indicate that certain connections are predictive of acquisition performance, 283 

they do not reveal which regions play a predominant role. To assess the extent to which each of the 284 

five ROIs could act as a “hub” governing individual differences in acquisition, we re-ran the LASSO 285 

model on one-hundred Monte-Carlo samples. In each iteration, we randomly selected 80% of the 286 

participants and recorded the frequency with which each ROI appeared in a significant connection. 287 

ROIs that appeared more frequently were considered more reliable and indicative of hub-like 288 

properties within the network. A Poisson mixed-linear model confirmed that, for functional 289 
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connectivity (FC), all ROIs except the AMY were significantly different from zero (zs > 2, ps < .05; AMY: 290 

z = -1.42, pFDR > .10). Post-hoc tests revealed that ACC and HIP had larger numbers of appearances 291 

than the other ROIs (psFDR < .05; see Fig 3E). Regarding EC, only the AMY and PFC were significantly 292 

greater than 0 (zs > 2, ps < .05; other ROIs: zs < 1.6, pFDRs > .10), with the AMY showing a larger 293 

number of counts than the other ROIs (zs > 4.5, psFDR < .001). There was no significant ROI for the SC 294 

analysis (zs < 1.6, pFDRs > .10). 295 

In summary, the acquisition results indicated that FC was predictive of learning across the entire 296 

sample, with a strong focus on connections involving the ACC and HIP. Paradigm-specific EC- and SC-297 

learning associations were also apparent, with differing dynamics for the PFC-AMY connections 298 

between PL and FL studies (disinhibition of AMY→PFC was beneficial for PL, whereas more 299 

pronounced inhibition PFC→AMY predicted greater fear acquisition). 300 

 301 

Extinction 302 

In stark contrast with our results during acquisition, we did not find any significant FC (or EC) 303 

connections that could predict individual differences in extinction learning across all paradigms. 304 

Interestingly, however, several structural connections consistently predicted extinction learning, most 305 

notably those involving the ACC, specifically, rHIP-rACC, lCEB-rACC, and bilateral AMY-ACC (see Fig. 306 

3D; using traditional p-values, these connections were all significantly above chance after correction 307 

for multiple comparisons, see Fig S22). In addition to these effects across both FL and PL 308 

experiments, the structural connections lHIP-lPFC, rAMY-rACC and rHIP-rACC predicted extinction in 309 

FL but not PL studies. However, the most interesting differences among the groupings were observed 310 

for EC, with a peculiar reversal in the direction of the AMY-HIP connectivity (benefit of more 311 

pronounced excitation of lHIP→lAMY for FL studies, benefit of higher disinhibition of lAMY→lHIP for 312 

PL studies), as well as a reversal in both directionality and valence of the HIP-ACC connection (less 313 

HIP inhibition by ACC being beneficial for PL extinction, and greater ACC inhibition by HIP being 314 

beneficial for FL extinction). In contrast, more pronounced PFC→ACC inhibitory connectivity was 315 

beneficial for extinction across the entire sample, as well as for FL separately.  316 

Post-hoc tests revealed that the ACC had the largest number of appearances relative to all other ROIs 317 

(zs > 8, psFDR < .001; see Fig 3E, middle panel). Regarding EC, only the HIP, CEB and PFC were 318 

significantly greater than 0 (zs > 2.14, pFDRs < .05; other ROIs: zs < 1.42, pFDRs > .10), with the PFC and 319 

CEB showing larger number of counts than the other ROIs (zs > 2.88, psFDR < .01). There was no 320 

significant ROI for the FC analysis (zs < 1.6, pFDRs > .10). 321 

In summary, extinction was mostly predicted by higher density of structural connections involving 322 

the ACC (and to a lesser degree, AMY). Paradigm-specific learning was again predicted mostly by EC, 323 

specifically, a reversal in directionality and/or valence for the AMY-HIP and HIP-ACC connections. 324 

 325 

Renewal 326 

Out of the six studies analysed above, S2 (FLr) and S4 (PLr) contained data about renewal after 327 

extinction. When both studies were analysed together, there were no significant FC or SC 328 

connections that could predict individual differences in renewal. However, the analysis of EC 329 

indicated that the greater the disinhibition of the HIP by AMY and PFC the greater the renewal effect, 330 

whereas renewal benefited from a higher inhibition of the ACC by the PFC (Fig 3D; using traditional 331 

p-values, only rPFC→rHIP and rPFC→rACC were significantly above chance after correction for 332 
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multiple comparisons, see Fig S22). Separate analysis for FLr renewal also revealed the relevance of 333 

disinhibition of the lHIP→lACC connectivity, whereas more pronounced inhibition of rCEB→lAMY, 334 

rCEB→lHIP, and rPFC→rACC connections, as well as disinhibition of rPFC→rHIP predicted renewal 335 

following PLr.  336 

The Poisson regression indicated that for EC, only the ACC, HIP and PFC were significantly different 337 

from zero (zs > 3.41, psFDR < .001; other ROIs: zs < 1.24, psFDR > .10). Pairwise comparisons revealed 338 

that the PFC had the largest number of appearances relative to all other ROIs (zs > 2.90, psFDR < .01), 339 

followed by the HIP (zs > 7.95, psFDR < .001; see Fig. 3E, right panel). No ROIs were observed for FC or 340 

SC models. 341 

In summary, differences in EC were more sensitive than FC or SC in predicting renewal. Our results 342 

also indicated the importance of disinhibition of the HIP by both the PFC and AMY. 343 

 344 
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345 
Figure 4. Generalisability of learning and simulations. (A-C) Generalisability of acquisition (A), extinction (B) 346 

and renewal (C) was examined by running the LASSO model on one type of paradigm (e.g., fear learning) and 347 

testing on the other type of paradigm (e.g., cognitive predictive learning). Mean squared errors (MSEs) of each 348 

of the models were used as measure of fit. (D-F) Leave-on-group out (LOGO) cross-validation indicated that 349 

functional, structural and effective connectivity predictions were generalisable for acquisition (D), extinction (E) 350 

learning and renewal (F), respectively. (G) Strategy for computing task-based functional connectivity for study 351 

S2. (H) Significant functional connectivity was obtained for our LASSO model but not for other models using 352 

random connections. (I) Significant connections obtained from the significant model in (F). Red stripes indicate 353 

the estimates for those connections in the resting-state LASSO model. (J-L) Simulation analysis indicated that 354 

our model predictions were superior in predicting acquisition (J), extinction learning (K) and renewal (J) relative 355 

to either the same number of random connections from the model (random), or connectivity between the 4
th

 356 

ventricle and lateral ventricles (ventricles). FC = Functional connectivity; SC = Structural connectivity; EC = 357 
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Effective connectivity. FL=Fear Learning studies (S1,S2,S3,S5,S6); PL=Predictive Learning studies (S4); FLr=Fear 358 

Learning renewal study (S4); PLr=Predictive learning renewal study (S4). ACC=Dorsal anterior cingulate cortex; 359 

CEB=Cerebellar nuclei; HIP=Hippocampus. 360 

 361 

Generalisability of learning predictors 362 

We found that the models showed significant generalisability. When the LASSO model was trained on 363 

one type of paradigm (e.g., FL) and tested on the other type of paradigm (e.g., PL), we observed a 364 

higher generalisability (i.e., lower mean squared errors) relative to a surrogate model in which the 365 

learning estimates had been shuffled across participants while keeping the structure of the 366 

remaining data matrix intact (all psFDR < .001; Fig. 4A-C). Selecting non-overlapping groups for FL and 367 

PL led to identical results (Fig. S32). 368 

In addition, we performed a leave-one-group-out (LOGO) cross-validation analysis (group here 369 

referring to the six individual studies), using a multiple regression analysis on the selected predictors. 370 

As Fig. 4D-F shows, the acquisition predictors were highly generalisable only when the functional 371 

connections were used (EC: r = -.01, pFDR > .10 ; FC: r = .14, pFDR < .01, SC: r = -.01, pFDR > .10), whereas 372 

extinction predictors were only generalisable when the structural connections were used (EC: r = .03, 373 

pFDR > .10; FC: r = -.14, pFDR > .10, SC: r = .23, pFDR < .001). For renewal, generalisability was found only 374 

when the effective connections were included, although this effect only reached trend level 375 

significance after correction for multiple comparisons (EC: r = .11, pFDR = .06; FC: r = .04, pFDR > 0.10; 376 

SC: r = -.02, pFDR > .10).  377 

Follow-up analyses confirmed that for FC, prediction performance was indeed significantly greater 378 

for acquisition than for either extinction or renewal (psFDR < .05), whereas SC prediction performance 379 

for extinction was significantly greater than for either acquisition or renewal (psFDR < .01). EC 380 

prediction performance was greater for renewal than for acquisition (p < .05; uncorrected) but did 381 

not differ from extinction (p > .10). We also compared prediction performance during acquisition, 382 

extinction, and renewal between the three types of connectivity. During acquisition, the FC 383 

prediction performance was greater than the performances of either SC or EC (psFDR < .05); during 384 

extinction, the SC prediction performance was greater than either FC or EC (psFDR < .01); and during 385 

renewal, the EC prediction performance was significantly greater than SC (p < .05; uncorrected) but 386 

not FC (p > .10). Thus, our LOGO results are consistent with our results from the LASSO models in 387 

that, at the whole-sample level, acquisition, extinction learning, and renewal are best predicted by 388 

FC, SC and EC, respectively. 389 

To the extent that the functional architecture of the individual’s brain is intrinsic, we should be able 390 

to observe a correspondence in the FC profile between task-based and resting-state connectivity27. 391 

Given that, in our study, resting-state FC in seven distinct connections were shown to predict 392 

acquisition across the entire group (Fig. 3B), we queried whether task-based FC would show a similar 393 

association. For that purpose, we selected two experiments from S2 for which task-fMRI data were 394 

available (N = 137). Task-based FC was computed for the time periods corresponding to the expected 395 

peaks of the BOLD signal for both CS+ and CS- trials during the acquisition phase. The difference in FC 396 

between CS+ and CS- was then calculated for each of the relevant ROIs and used as predictors in a 397 

subsequent multiple regression model (see Fig. 4G and Methods). 398 

The model including the LASSO predictors was significant (F(7,90) = 2.39, p < .05, R2 = .16; Fig. 4H). In 399 

addition, three out of six predictors (lHIP-lACC, rCEB-lHIP and rHIP-rACC) reached individual 400 

significance (see Fig. 4I). This result indicates that task-dependent functional connectivity during 401 
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acquisition using the predictors from the resting-state LASSO model was predictive of learning 402 

performances as well. This result was specific, because none of the models using pseudo-random 403 

functional connections within the core learning network was significant (all ps > .05, uncorrected), 404 

and the maximum R
2
 value that could be achieved (0.089) was almost half of that for the significant 405 

model with the LASSO predictors (0.157; see Fig. 4H). 406 

Next, we enquired whether our combination of selected predictors would show a performance 407 

advantage over random connections between our ROIs that were not selected in the original LASSO 408 

models, by using simulated data. If so, this would show an additional layer of generalisability in the 409 

sense that our predictions could potentially be applicable to new datasets. For that purpose, we 410 

artificially generated 100 independent datasets (including all predictors, learning measure and 411 

covariates), each with 40 observations, based on purely simulated data drawn from a multivariate 412 

normal distribution that mimics the relationships between variables in our original dataset (see 413 

Methods). The performance of the selected LASSO model was tested against a pseudo-random 414 

model that consisted of an equal number of predictors as the LASSO model but chosen at random 415 

(excluding the LASSO predictors) within the same type of connectivity. 416 

Fig. 4J-L show the results of the simulation analysis (see also Fig. S35 for the results using 417 

bootstrapping). For both acquisition, extinction, and renewal, we observed significantly larger R
2
 418 

values for the LASSO model relative to the pseudo-random model (all psFDR < .001; black bars in Fig. 419 

4J-L). In addition, when the data were split into an FL and a PL group, better performances of the 420 

LASSO models were again observed for both groups for extinction and renewal (PL: p < .001, FL: pFDR 421 

= .01; coloured error bars in Fig. 4J-L), and the PL group showed a significant effect for acquisition 422 

(PL: pFDR < .001, FL: pFDR = .16). 423 

In summary, generalisation of our predictions occurred between FL and PL paradigms, but only for 424 

the types of learning that could be predicted by the particular type of brain connectivity (i.e., 425 

transferable acquisition, extinction and renewal effects only for FC, SC, and EC, respectively). In 426 

addition, our (resting-state-based) model connections were more successful in predicting learning 427 

from task-based FC than alternative connections. Finally, our model predictions were also more 428 

successful in predicting learning in simulated datasets than pseudo-random connections within the 429 

core learning network. 430 

 431 

 432 
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Figure 5. Graphical depiction of all models in which significant connections between nodes were found. (A) 433 

Summary of the functional connectivity (FC) model using the combined sample of cognitive predictive learning 434 

and fear learning studies, showing significant connections in the acquisition phase. The presence of a 435 

connection in this figure reflects its selection by LASSO in Fig. 3. For example, in Fig. 3B, LASSO identified a 436 

relevant ACC-HIP FC connection but not an ACC-CEB FC connection, which is depicted here as a line connecting 437 

ACC-HIP but not ACC-CEB. The size of each node represents its relative importance, as determined by Poisson 438 

regression analyses (Fig. 3E), with dashed outlines indicating non-significant nodes. (B) Same as (A) but 439 

showing the structural connectivity (SC) connections significant in the extinction phase. (C) Same as (A) but 440 

showing the SC connections significant in the renewal phase. (D-E) Graphical depiction of the PL (D) and FL (E) 441 

model, showing the effective connectivity (EC) connections significant in the acquisition phase. (F-G) Same as 442 

(D-E) but for the extinction phase. (H-I) Same as (D-E) but for the renewal phase. The bottom panels (D-I) 443 

integrate results from spectral DCM and LASSO analyses. For example, in Fig. 5E, the AMY→HIP connection is 444 

shown as a red arrow with a minus sign. The spectral DCM analysis (Fig. 1E) indicated that this connection was 445 

inhibitory (blue colour), which is indicated by a - sign in this figure, while the LASSO model for acquisition found 446 

a positive coefficient for this connection, which is indicated by the red arrow. In this way, the figure visually 447 

conveys which connections are inhibitory (- signs) and whether learning benefited from reduced inhibition 448 

(positive coefficients, red arrows) or increased inhibition (negative coefficients, blue arrows). Connections with 449 

alternative red and blue arrows indicate that their effects varied by hemisphere. Red and blue arrows indicate 450 

whether the association between learning and connectivity was positive or negative, respectively (see tile plots 451 

of Fig. 3B-D). Plus and minus signs indicate excitatory and inhibitory connections (see Fig. 1E). Please note that 452 

red arrows on inhibitory connections (- signs) indicate that disinhibition of these connections was beneficial in 453 

a given learning phase, while blue arrows on inhibitory connections (- signs) indicate a benefit of more 454 

pronounced inhibition. ACC = Dorsal anterior cingulate cortex; AMY = Amygdala; CEB = Cerebellar nuclei; HIP = 455 

Hippocampus; PFC = Ventro-medial prefrontal cortex. 456 

  457 
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Discussion 458 

Here we show that individual abilities of learning, extinction, and renewal can be explained by 459 

distinct types of resting-state connectivity among a small set of regions within the core learning 460 

network. This is substantiated by the observation of a triple dissociation, with FC, SC and EC better 461 

predicting acquisition, extinction learning, and renewal, respectively. To our knowledge, this 462 

highlights for the first time the distinct functional roles of different types of brain connectivity for 463 

the different learning phases. Our findings reveal a core role of the ACC as a "hub" within this 464 

network. Surrounding this core, additional areas make specific contributions to learning, extinction, 465 

and renewal. 466 

Contrary to previous assumptions, we demonstrate that heterogeneity in learning measures, 467 

experimental setups, MR sequences, and statistical methods are no detriment for reliably detecting 468 

across-study effects, provided that careful harmonisation of sequence parameters and appropriate 469 

statistical modelling are employed. Indeed, the results of our generalisation analyses make it likely 470 

that our findings are applicable to a great variety of learning paradigms. Thus, we believe that the 471 

present study represents a major step forward in identifying a global neural architecture that 472 

determines individual abilities of learning and extinction, as well as the propensity for renewal. We 473 

will outline this in the following sections, one by one. 474 

 475 

Different types of connectivity within the core learning network 476 

Our results, shown in Fig. 1B-F, demonstrate that the three types of connectivity – expressed by 477 

structural, functional and effective connectivity – are clearly dissociable, suggesting that they reflect 478 

different neurophysiological processes. For example, HIP-AMY connectivity was noticeably higher 479 

than any other connection, which is not surprising given the myriad animal fear learning studies 480 

showing a tight coupling between these two regions (for reviews see 12,14,15). Importantly, however, 481 

the relative connectivity strengths were not always equivalent between FC, SC and EC – for instance, 482 

ACC and PFC showed stronger structural connections than HIP-PFC, even though FC was higher for 483 

the latter connection. Similarly, cerebellar effective connectivity to HIP, AMY, and PFC showed some 484 

of the strongest effects even though they shared the least number of streamlines (see Fig. 1C). This 485 

dissociation between the three types of connectivity is the basis for their putatively different 486 

functional implications. 487 

The EC results revealed mostly inhibitory connections, with the notable exception of the HIP→AMY 488 

excitatory connection. Given that long-range connections are assumed to be predominantly 489 

excitatory
42

, our finding that most extrinsic (inter-areal) connections were inhibitory may appear 490 

puzzling. However, recent evidence suggests that a homeostatic brain makes abundant use of 491 

inhibitory connectivity, which allows for an effective control of the stability of memory patterns43,44. 492 

One mechanism contributing to this inhibitory network is through feedback-driven regulation. 493 

 494 

Neural predictors of acquisition 495 

Fear acquisition involves a conditioned stimulus (CS) that does not elicit any response on its own and 496 

an unconditioned stimulus (US) which elicits strong responding without need of prior training. Our 497 

analyses of FC patterns show that pre-existing functional interactions reliably predicted the amount 498 

of learning across the highly diverse fear conditioning and predictive learning paradigms that we 499 

employed. Since FC is strongly state-dependent45, our results point towards the relevance of 500 
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pronounced intra-individual differences in learning. This is substantiated by the observation that 501 

acquisition could not be predicted by arguably more stable and trait-like patterns of structural 502 

connectivity. The gradually increasing learning curve observed across participants often results in the 503 

misleading interpretation that an association is learned slowly and with similar speed. However, 504 

individual learning curves often reveal a step-like rise of underlying associative strength that occurs 505 

with high differences46. Our results suggest that intra-individual differences captured by FC 506 

contribute to this variance. 507 

Fear conditioning and predictive learning are known to go along with ACC activation23,24. Accordingly, 508 

we found that ACC connectivity to HIP, PFC, and AMY were among the most reliable predictors of 509 

acquisition across the entire sample (see Fig. 3B and 5A). The HIP has been commonly linked to the 510 

formation of new episodic memories
47

, whereas connectivity with the PFC may reflect recruitment 511 

of appraisal processes
16

. Furthermore, projections from ACC to AMY appear essential in mediating 512 

fear behaviour48, and our results suggest that this effect also applies to PL. Thus, the functional 513 

relevance of HIP-ACC, ACC-PFC and AMY-ACC connectivity may be related to the acquisition of novel 514 

memories and the evaluation of the motivational significance of the CS. 515 

The connection to CEB might have a different character. During fear learning, large parts of the 516 

cerebellar cortex are activated by the prediction error17. Firing patterns of the cerebellar fastigial 517 

nucleus regulate fear-learning via thalamo-prefrontal dynamics, freezing behaviour through the 518 

periaqueductal grey, and anxiety behavior via thalamo-amygdala systems49. Given that during 519 

Pavlovian conditioning, the CS usually precedes the US with high contiguity, the CEB could serve as a 520 

fine-tuned predictor for the timepoint of the occurrence or the absence of the US. 521 

In summary, fear-related information from cortico-thalamic pathways may arrive in the AMY for 522 

initial processing (“quick and dirty” route50). AMY connection to ACC and onwards to PFC could have 523 

important roles in appraisal and, for FL, suppress excess AMY activity, while HIP and CEB are 524 

implicated in the formation of new memory traces and indicating time points of prediction error 525 

information, respectively. These types of information may be relayed to the ACC, which, in turn, 526 

conveys this information back to the AMY for final integration and gating of fear responses. 527 

 528 

Neural predictors of extinction learning 529 

During extinction, the CS is no longer followed by the US. This ignites an expectancy-driven 530 

prediction error that does not erase the CS-US acquisition memory but establishes a second 531 

inhibitory trace that suppresses the occurrence of the conditioned response
2
. These learning events 532 

were only predicted by SC across the entire sample, but not by FC or EC. This suggests that the 533 

propensity of extinction is contingent on stable individual traits. Consequently, extinction learning is 534 

related to personality traits including tolerance of uncertainty51 and trait anxiety52, and is particularly 535 

sensitive to rather stable microstructural white-matter measures and cortical thickness of selected 536 

emotional circuits
52,53

.  537 

As with acquisition, the ACC took a central role in extinction learning. Not only did its connectivity 538 

with HIP, AMY and CEB predict the speed of extinction, but also the connections involving the ACC 539 

were by far the most reliable. Indeed, two recent human neuroimaging meta-analyses reported 540 

activation of this region as the most consistent finding during extinction
25,54

, suggesting the ACC may 541 

function as a “hub” within the core learning network
55

. In addition to ACC, an intact HIP-PFC 542 

pathway seems crucial for the formation (and recall) of fear extinction and its contextual modulation 543 

in animal15 as well as human neuroimaging studies56. Furthermore, PFC-AMY connectivity predicted 544 
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extinction learning, corroborating early human neuroimaging connectivity findings18,19 as well as 545 

results from rodents and non-human primates
57,58

. The integrity of the PFC-AMY pathway may thus 546 

be critical in allowing the PFC to regulate the formation and maintenance of extinction memories by 547 

active suppression of AMY output14.  Finally, extinction could be predicted by HIP-AMY SC. Given 548 

their roles in the encoding of contextual representations and expression of CRs, respectively14,15, a 549 

stable HIP-AMY pathway would ensure that their integration results in a contextually-appropriate 550 

response
59

. Our results could imply that the extent of this ability is a trait factor.  551 

Regarding EC, analysis of FL indicated that inhibition of ACC by both PFC and HIP was related to 552 

extinction. Also, just as with acquisition, PFC suppression of AMY activity improved fear extinction in 553 

FL studies. We also found a modulation of AMY activity by HIP input (see Fig. 5G). Since extinction 554 

learning is context-dependent, the excitatory HIP→AMY pathway would enable the HIP to relay back 555 

the crucial CS-context information necessary for the formation of context-dependent extinction 556 

memories in the AMY.  557 

In sum, our results indicate that structural connections among PFC-HIP-AMY may form part of a 558 

circuit in which the PFC suppresses excess AMY excitation (for FL only) under the HIP-driven 559 

representation of the appropriate context (for both FL and PL). The ACC may be a critical “hub” that 560 

synchronises these interactions and delivers the output to AMY for final integration. 561 

 562 

Neural predictors of renewal 563 

As outlined above, extinction is not an erasure of the old association, but the formation of a new 564 

memory trace of inhibitory nature. This can be demonstrated by several phenomena of which 565 

renewal is possibly the most interesting one. Renewal is the recovery of the extinguished response, 566 

induced by changing the context from that of the extinction phase back to that of acquisition. By 567 

this, it becomes obvious, how much context-dependent extinction learning is2,60. Across all studies, 568 

individual differences in renewal could only be explained by EC. Even though we cannot discard the 569 

possibility that absent SC (or FC) associations may partially relate to lower statistical power (only 570 

studies S2 and S4 were included), the EC results, nevertheless, indicate that the inhibitory network 571 

(see Fig. 5H-I) convey more information about renewal than that afforded by either SC or FC. Also 572 

note that rs-fMRI was recorded shortly before acquisition/extinction, whereas renewal was tested 573 

the day after. If renewal is related to state variability, and if FC is more susceptible to decay over 574 

time than EC61, this could explain the prevalence of EC-related associations with renewal. 575 

The communication between HIP and PFC was particularly involved in renewal. Indeed, fear renewal 576 

increases connectivity between HIP and PFC
35

, inactivation of either of these two components 577 

reduces fear renewal62,63, and both PFC and HIP activity during extinction is positively correlated with 578 

renewal in predictive learning21–23. Renewal is also strongly context-dependent. A recent 579 

computational study made it likely that hippocampal replay is necessary and sufficient to generate 580 

context representations in the PFC64. Indeed, only participants with stronger hippocampal activation 581 

during extinction in a novel context relative to the acquisition context show renewal
65

. Accordingly, 582 

our PL studies showed that greater renewal was associated with HIP disinhibition by the PFC.  583 

Also, the unidirectional AMY→HIP connection was relevant for renewal. In rodents, AMY projections 584 

to ventral HIP modulate affective states66,67, such that this pathway may play a major role in the 585 

reemergence of fear memories59. Indeed, renewal probably represents a re-activation of the 586 

neuronal ensemble that was constituted during acquisition
60

. Simultaneous recordings from 587 

amygdala and hippocampal CA1 in fear-conditioned mice show synchronized activity that is related 588 
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to the fear associated CS and results in freezing68. Thus, synchronized AMY→HIP connections could 589 

mediate fear memory retrieval that is associated with the re-exposure of the contextual cues that 590 

were present during acquisition but absent during extinction. This fits with the observation that a 591 

specific activation of a sparse ensemble of hippocampal cells elicits the recall of a context-bound 592 

memory engram of fear69. 593 

In summary, our results indicate that renewal is driven by the interaction of PFC and HIP, possibly by 594 

hippocampal replay that generates representations of the critical context in the PFC. Additionally, 595 

AMY-input to HIP possibly mediates the activation of fear-related memories in context-dependent 596 

ways. This could imply that prefrontal fear memories become contextually bound by hippocampal 597 

replay and can subsequently be activated during renewal by AMY activations that process the 598 

context that was present during acquisition. 599 

 600 

Generalisability and clinical relevance of our findings 601 

Across three different types of generalisability analysis, we were able to show that our model 602 

predictions are not only transferable between FL and PL studies, but also that the connections 603 

identified during resting states predict learning even when they are applied to task-based FC. A triple 604 

dissociation using across-studies predictions confirmed the higher predictive power of FC for 605 

acquisition, SC for extinction, and EC for renewal. The simulation results also indicate that our model 606 

could potentially be applied to new data – using our selected connections resulted in more 607 

explanatory variance than using pseudo-random connections from the same model. 608 

The generalisability of our findings may also have clinical implications for the psychotherapy 609 

practice. Anxiety disorders are typically treated within a particular therapeutic context, so one major 610 

challenge is to ascertain how to reduce fear over and beyond the therapeutic setting. To translate 611 

basic research to the treatment of fear-related disorders, it is crucial to understand how fears are 612 

both acquired and inhibited. We believe our study is a step closer to that aim. Across a large group 613 

of (healthy) participants and different paradigms, we showed that fear and extinction learning can 614 

be reasonably predicted by only a few connections between selected brain regions. The finding that 615 

the propensity for extinction may be more hardwired than renewal could imply that rather than 616 

optimising a person’s extinction ability, it may be more efficient to target (i.e., prevent) renewal. 617 

Fear learning and extinction are putative core mechanisms in the psychopathology and treatment of 618 

affective disorders. Thus, our findings may provide a foundation for future research into how 619 

individual differences in connectivity patterns related to learning and extinction contribute to 620 

differences in the risk for (or resilience against) affective disorders, and inform potential therapeutic 621 

interventions. Thus, our results complement current research in precision medicine on the role of 622 

different resting-state networks for distinct biotypes of affective disorders (including depression), 623 

which may help guiding decisions about specific therapeutic interventions29. Specifically, they 624 

indicate that structural connectivity is more directly related to extinction learning – and thus 625 

possibly, exposure therapy – than is functional connectivity, and suggest that the individual 626 

strengths of structural network connections should be considered in clinical populations in addition 627 

to currently applied measures of functional connectivity70. 628 

Finally, our data show that both acquisition and extinction involve extensive interactions with PFC 629 

and ACC. Indeed, research on the neural bases of cognitive-behavioural therapy (CBT; the most 630 

popular psychotherapy treatment for anxiety-related disorders) has suggested that therapy success 631 

depends on stable inhibitory control of AMY by PFC and ACC71. Thus, modulating the PFC/ACC during 632 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2025. ; https://doi.org/10.1101/2025.05.04.651880doi: bioRxiv preprint 

https://doi.org/10.1101/2025.05.04.651880
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 

extinction (e.g. by altering schema representations in these regions) could potentially affect 633 

subsequent novel fear learning. This could be achieved by using non-invasive techniques such as 634 

repetitive transcranial magnetic stimulation (rTMS) and/or theta band transcranial alternating 635 

current stimulation (tACS), both of which have been shown to being able to specifically modulate 636 

PFC/ACC function55,72,73. 637 

 638 

Limitations of the present study 639 

One important limitation of the present study was the relatively small number of ROIs in our 640 

network. The inclusion of only a subset of regions was driven not only by theoretical reasons (see 641 

Supplemental Fig. S36 and Table S1), but also a statistical one. When computing EC, the number of 642 

possible ipsilateral connections is given by the formula 2*(n2 – n). Thus, the addition of only two 643 

ROIs would have more than doubled the number of predictors in our models, surpassing the number 644 

of participants in some of the experiments. Future studies could combine our brain connectivity 645 

findings, while exploring additional connections which, together, may enhance predictive power. 646 

In addition, the lack of symmetry in explaining learning from the same connection in both 647 

hemispheres was surprising, given that the connectivity estimates were similar between 648 

hemispheres. This result may have partly been due to an inherent feature in LASSO’s variable 649 

selection procedure. Left and right hemispheric connections are often highly correlated. LASSO may, 650 

thus, favour the connection from one hemisphere which is a slightly better predictor than the 651 

corresponding connection from the other hemisphere, and penalise the other, leading to 652 

asymmetries in the identified contributing connections. Even though this feature does not directly 653 

affect the conclusions reached in our study, future work could explore the impact of different 654 

regularization strategies to better account for the relative contributions of both hemispheres in 655 

predictive modelling. 656 

Finally, all experiments analysed here fell under either the fear learning or the cognitive predictive 657 

learning paradigm. However, in order to establish the validity of the core fear and learning network, 658 

it will be important that future studies include a greater variety of paradigms, such as blink 659 

conditioning, appetitive and olfactory learning. 660 

 661 

Conclusion 662 

Individual differences in learning and extinction are core determinants of cognitive flexibility and are 663 

believed to be crucial for explaining treatment success of fear-related disorders. Despite its obvious 664 

fundamental relevance and clinical importance, the lack of consensus regarding the neural 665 

mechanisms of underlying individual abilities in learning and extinction has hindered progress in the 666 

translation of neurobiological models of extinction to clinical applications. We believe our study 667 

takes a step forward in bridging that gap. By a careful process of homogenisation, using novel 668 

approaches to identify subject-specific learning across different paradigms, applying complementary 669 

types of brain connectivity, and conducting state-of-the-art statistical modelling, we were able to 670 

show both similar and distinct neural mechanisms of learning and extinction across a multitude of 671 

paradigms. These results have profound implications for understanding why the abilities of learning 672 

and extinction, as well as the propensity to show renewal, are highly variable in both healthy and 673 

clinical populations. 674 

 675 
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Methods 676 

Participants. The study described here was conducted as part of a large-scale collaborative research 677 

project, SFB1280 “Extinction Learning” (sfb1280.ruhr-uni-bochum.de). Participants were recruited 678 

for different studies within this project. In addition to task-based fMRI, participants in these studies 679 

also took part in resting-state and/or diffusion-weighted imaging scanning sessions. Only participants 680 

with neuroimaging data from at least one of these modalities were included in the present analysis 681 

(see Fig. 1A). This study was approved by the respective local ethical committees, and all participants 682 

gave written informed consent and were monetarily reimbursed or received course credits (see Table 683 

S2 for demographical information). 684 

For resting-state fMRI, 513 participants in total were included in 6 different studies: S1, N=28 [age = 685 

24.4 (3.51 SD), 19 women]; S2, N=152 [age = 22.0 (2.20 SD), 95 women]; S3, N=44 [age = 23.5 (3.56 686 

SD), 22 women]; S4, N=177 [age = 25.8 (4.19 SD), 89 women]; S5, N=56 [age = 24.1 (3.74 SD), 26 687 

women]; S6, N=56 [age = 26.3 (4.66 SD), 38 women]. 688 

For diffusion-weighted imaging, 467 participants in total were included in 5 studies: S2, N=166 took 689 

part in S2 [age = 21.9 (2.17 SD), 103 women]; S3, N=44 [age = 23.5 (3.56 SD), 22 women]; S4, N=175 690 

[age = 25.7 (4.04 SD), 85 women]; S5, N=56 [age = 24.1 (3.55 SD), 25 women]; S6=56 [age = 26.5 691 

(4.85 SD), 27 women]. 692 

 693 

Scanning sequences 694 

All MRI images were acquired using a 3T MRI scanner (S1, S2, S4, S5, Philips Achieva; S3, Siemens 695 

MAGNETOM Vida; S6, Siemens Skyra). Because participants were scanned at three different locations 696 

using 3 different 3T MRI systems from two different vendors, distinct sequence and imaging 697 

parameters had to be used. To ensure that our connectivity estimates were stable across sites and 698 

time, we scanned two travelling heads over the course of three years on the three different scanners 699 

in which the imaging data for the actual studies were acquired. Both resting-state and diffusion 700 

weighted imaging scans were acquired using the exact same parameters that were used in the actual 701 

individual studies (see below).  702 

Fifty-six ROIs selected from FreeSurfer’s automatic parcellation/segmentation (Fig. S1A) were used to 703 

compute FC between all pairs of ROIs, as well as fractional anisotropy (FA) within each ROI. Test-704 

retest reliability, estimated using Cronbach’s alpha, was very high across all sessions, for each site, 705 

and for each travel head (αs > 0.84, ps < .001; Fig. S1B, left). FC estimates expectedly showed greater 706 

variation than FA estimates, but correlations between sites were highly significant in both cases (rs > 707 

.60, pFDRs < .001; Fig. S1B, middle). In addition, FC and FA estimates for each ROI remained relatively 708 

stable across the different sessions (Fig. S1B, right). Similar results were obtained when using only 709 

the ROIs selected for the main study (Fig. S2). 710 

For the high-resolution T1-weighted (MP-RAGE) structural images the following parameters were 711 

used: TR = 8 ms, TE = 4 ms, flip angle = 8°, voxel size = 1 x 1 x 1 mm3, FOV = 24 x 24 cm (studies 712 

S1,S2,S4,S5); TR = 2.53 ms, TE = 2 ms, flip angle = 7°, voxel size = 1 x 1 x 1 mm3, FOV = 19.2 x 25.6 cm 713 

(study S3); TR = 1.77 ms, TE = 3 ms, flip angle = 8°, voxel size = 1 x 1 x 1 mm
3
, FOV = 19.2 x 25.6 cm 714 

(study S6). 715 

Whole-brain T2*-weighted images during rs-fMRI were acquired using a gradient echo, echo-planar 716 

imaging (EPI) sequence with the following parameters: TR = 2.5 s, TE = 30 ms, flip angle = 90°, voxel 717 

size = 3 x 3 x 3 mm
3
, FOV = 24 x 24 cm, 80 x 80 voxels, number of slices = 47, number of volumes = 718 
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190 (studies S1,S2,S4); TR = 1.43 s, TE = 30 ms, acceleration factor = 2, flip angle = 69°, voxel size = 3 x 719 

3 x 3 mm
3
, FOV = 24 x 24 cm, 80 x 80 voxels, number of slices = 48, number of volumes = 190 (study 720 

S3); TR = 2.5 s, TE = 30 ms, flip angle = 90°, voxel size = 3 x 3 x 3 mm3, FOV = 28 x 31 cm, 92 x 92 721 

voxels, number of slices = 46, number of volumes = 192 (study S6). 722 

Diffusion-weighted images were acquired using the following parameters: TR = 9.5 s, TE = 88 ms, flip 723 

angle = 90°, voxel size = 2 x 2 x 2 mm
3
, FOV = 24 x 24 cm, 112 x 112 voxels, number of slices = 60, 724 

number of directions = 60 (b = 1000 s/mm2) (studies S1,S2,S4); TR = 5.5 s, TE = 114 ms, flip angle = 725 

90°, voxel size = 1.6 x 1.6 x 1.6 mm3, FOV = 24 x 24 cm, 132 x 128 voxels, number of slices = 60, 726 

number of directions = 60 (b = 1000 s/mm2) (study S3); TR = 10.2 s, TE = 87 ms, flip angle = 90°, voxel 727 

size = 2 x 2 x 2 mm3, FOV = 60 x 60 cm, 120 x 120 voxels, number of slices = 70, number of directions 728 

= 60 (b = 1000 s/mm
2
) (study S6). 729 

 730 

Experimental paradigms 731 

S1: The paradigm for this study consisted of four phases over two days: fear acquisition and fear 732 

reversal (day 1), followed by fear extinction (day 2). Participants viewed images of household 733 

appliances (16 CS in total), some paired with an electric shock (US). CS were presented for 1s, 734 

embedded within 2s video contexts that preceded them. The US, when delivered, lasted 0.75s and 735 

followed the CS presentation. During fear acquisition, half of the CS were reinforced (CS+; 50% 736 

probability) whereas the other half were not (CS-). In fear reversal, contingencies were switched for 737 

half of the CS. US expectancy ratings were collected on each trial using a 4-point scale (2.5s 738 

duration), and trials were separated by a fixation cross (7–9s). 739 

S2: In this study, participants viewed office scenes where a desk lamp’s colour indicated CS type: one 740 

colour (CS+) was paired with a shock (US; 62.5% probability), while another (CS-) was not. Each trial 741 

included a fixation cross (6.8–9.5s), a context image (1s), and the CS presentation (6s). Fear 742 

acquisition involved 16 trials per CS type, followed by extinction and renewal phases without 743 

reinforcement. 744 

S3: In this study, two geometric shapes served as CS, with one (CS+) paired with a shock (US; 62.5% 745 

probability) during acquisition, while the other (CS-) remained unpaired. The experiment spanned 746 

two days: habituation (6 trials), acquisition (16 CS-, 16 CS+, 10 CS+US trials), and extinction (16 trials 747 

per CS type) occurred on day 1, while recall (not analysed) was on day 2. Trials lasted 8s, with shocks 748 

(when present) delivered at 7.9s. Inter-trial intervals varied between 14.3s and 17.9s. 749 

S4: Participants learned to predict whether specific foods would cause a stomach-ache based on 750 

context (restaurant). During acquisition (80 trials; 8 stimuli × 10 repetitions), each food was shown in 751 

one of two contexts for 3s, followed by a question screen (max 4s) and 2s feedback. In extinction (80 752 

trials), half of the stimuli were shown in the same context (AAA), half in a different one (ABA); 753 

extinction and distractor stimuli were included. The renewal phase (24 trials; 3 repetitions per 754 

stimulus) was conducted in the original context without feedback. Inter-trial intervals varied 755 

between 5–9s. 756 

S5: In this study, participants viewed three geometric shapes (CS+G, CS+N, CS–) matched in 757 

luminescence and surface area. During acquisition (day 1), CS+G and CS+N were followed by an 758 

electrical shock (US; 62.5% probability), while CS– was never reinforced (8 trials). Each trial lasted 759 

20Zs: a jittered 0–2.5Zs black screen, 8Zs CS presentation, and 9.5–12Zs inter-trial interval. During 760 
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extinction (day 2), each CS was shown 8 times; CS+N and CS– appeared in original size, while CS+G 761 

was presented across four sizes (100%, 75%, 50%, 25%, each size shown twice). 762 

S6: This paradigm included two randomized-controlled studies examining the effects of systemic 763 

inflammation on fear learning. On day 1, participants underwent acquisition training, where three 764 

visual CS were paired with either visceral pain (CS+US+vis), an aversive tone (CS+US+aud), or no US 765 

(CS–). A total of 36 CS trials were presented (12 per CS type), with 75% reinforcement for CS+ (9 766 

US+vis, 9 US+aud). CS were shown 6–10Zs before US onset, and US lasted 14Zs, with CS and US co-767 

terminating. On day 2, extinction included the same CS sequence presented without reinforcement. 768 

Inter-stimulus intervals consisted of a fixation cross (8Zs). Participants received either intravenous 769 

LPS or placebo 2Zh before acquisition (study 1) or extinction (study 2). Only responses to CS+US+vis 770 

were analysed. 771 

For more details regarding the description of these studies see the section “Experimental paradigms 772 

(extended text)” and Fig. S3 in the supplementary information. 773 

 774 

Preprocessing of neuroimaging data. 775 

For the preprocessing of the resting-state fMRI data, fmriprep (version 20.1.1) was used, which 776 

included, removal of the first two volumes, motion correction, slice timing correction and co-777 

registration to the T1w image. The BOLD time-series were resampled onto native space. 778 

For denoising, we extracted the expanded motion regressors from the fmriprep output (6 standard 779 

motion parameters, their quadratic terms and corresponding temporal derivatives; total of 24 780 

regressors), in addition to the global signals and the mean signals within WM and CSF masks. In total, 781 

36 regressors were used for denoising, as recommended by Satterthwaite and colleagues14. Next, we 782 

fitted a GLM using these sources of noise, and extracted the residuals of the resulting demeaned 783 

time series, which we then used for the functional/effective connectivity analysis described below.  784 

FreeSurfer was run within fmriprep, thus, additionally providing the segmentation and parcellation 785 

maps (in native space) which were needed for the ROI extraction (see below). 786 

For the preprocessing of diffusion-weighted imaging data, we initially ran the function dwidenoise 787 

from MRTrix3 (https://www.mrtrix.org/), which implements dMRI noise level estimation and 788 

denoising based on random matrix theory, followed by mrde gibbs, which additionally removes Gibbs 789 

ringing artifacts.  790 

Topup was then applied in order to estimate and correct susceptibility-induced distortions, followed 791 

by eddy-current correction, in order to correct eddy currents and movements in the diffusion data
75

. 792 

Finally, we ran FSL’s tool eddy_quad for quality assessment of individual datasets. 793 

 794 

ROI extraction. 795 

Two different parcellation maps from FreeSurfer (Desikan-Killiany and Destrieux; version 6) were 796 

used for extracting regions-of-interest (ROIs).  797 

A total of ten ROIs were extracted: amygdala (AMY), hippocampus (HIP), ventro-medial prefrontal 798 

cortex (PFC), dorsal anterior cingulate cortex (ACC) and cerebellar nuclei (CEB), for both the left and 799 

right hemispheres. We decided to include cerebellar nuclei as ROI and not the cerebellar cortex, 800 

because the cerebellar nuclei are the sole output structure of the cerebellum (see 
76

 for a recent 801 
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review). The choice of ROIs was determined by the SFB1280 consortium prior to any data acquisition 802 

(see also Fig. S36 and Table S1, for a literature review implicating these regions in learning and 803 

extinction). 804 

AMY and HIP were taken from the automatic volumetric segmentation of the subcortical regions 805 

(aseg). We extracted the labels from the Desikan-Killiany atlas “medial-orbito frontal” and “caudal 806 

anterior cingulate”, which correspond to the PFC and ACC, respectively (see Fig. 1B and Fig. S4). 807 

Given that the automatic FreeSurfer’s parcellation does not output the cerebellar nuclei (only the 808 

cerebellum as a whole), additional processing was required to construct the CEB ROIs. We employed 809 

the SUIT pipeline (https://www.diedrichsenlab.org/imaging/suit.htm). After aligning the T1w image 810 

of each individual to the ACPC, the cerebellum was cropped from the rest of the brain and 811 

normalised using DARTEL for the purpose of matching it to the SUIT atlas (in MNI space). We then 812 

applied an inverse normalisation to reslice the SUIT atlas into the functional space of each 813 

participant. Finally, the cerebellar nuclei (interposed, dentate and fastigial nuclei) were extracted and 814 

merged into one single ROI (Fig. 1B). 815 

All ROIs were resampled into functional (rs-fMRI) and FreeSurfer space. For both functional and 816 

effective connectivity, the ROIs in functional space were used. For structural connectivity, all ROIs 817 

were kept in FreeSurfer’s native space, in order to take advantage of surface files (e.g., pial surface) 818 

that is known to improve the accuracy of tractography77. In addition, the PFC and ACC volumetric 819 

ROIs were also converted into surfaces (Fig. S4). These surface ROIs were only used for computing 820 

streamlines during probabilistic tractography. Tracking from surfaces from cortical brain regions has 821 

advantages relative to their volumetric counterparts77. 822 

We also extracted the bilateral thalamus using FreeSurfer’s automatic segmentation. The thalamus of 823 

the contralateral hemisphere with respect to the seed/target CEB was used as a waypoint to more 824 

accurately guide tractography that included CEB ROIs (see Structural Connectivity section below for 825 

more details). 826 

 827 

Functional connectivity (FC)  828 

Recently Mohanty et al.78 tested the accuracy of several FC metrics by evaluating a support vector 829 

machine classifier using a neighbourhood component analysis feature selection. They found that FC 830 

was better characterized by a combination of nine different but complementary metrics (a composite 831 

metric) than any metric alone. The authors reasoned that Pearson correlations - the most common 832 

measure of FC - only look for statistical linear time-dependencies, whereas there could still be 833 

underlying statistical dependencies between BOLD signals that are poorly captured by Pearson 834 

correlations (e.g., non-linear dependencies). 835 

Therefore, for the present study, we followed Mohanty’s recommendation and computed a total of 836 

nine functional connectivity metrics: Pearson correlation, cross-correlation, dynamic time warping, 837 

Euclidean distance, Manhattan distance, Wasserstein distance, mutual information, coherence and 838 

wavelet coherence (see Supplemental Methods, Table S4 for the mathematical implementation, Fig. 839 

S7 for correlations among these metrics, and Fig. S8 for comparisons among the different FC metrics 840 

within our network). 841 

For the functional connectivity analysis within the core learning network, a multilevel model was fit 842 

with the learning estimates as the outcome variable and the connectivity values for the 20 ROI pairs 843 

as the predictors of interest. Age and sex were included as covariates, and participant nested within 844 
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study was treated as a random effect. Correction for multiple comparisons between the different 845 

connections was performed using the false discovery rate (FDR) method. 846 

 847 

Effective connectivity (EC) 848 

EC was estimated using spectral dynamic causal modelling (spDCM), a toolbox for SPM1231. spDCM is 849 

a variant of standard DCM that it especially developed for modelling resting-state data. It is based on 850 

the cross (power) spectral density of the observed BOLD time-series (see the Supplemental Methods 851 

for a comprehensive mathematical description of spDCM; see also Fig. S10 for the correlation 852 

between EC estimates and those from the FC metrics coherence and cross-correlation). 853 

From the preprocessed and denoised functional images, a single representative timeseries was 854 

computed for each ROI by performing a principal component analysis across voxels and retaining the 855 

principal eigenvariate. This procedure has the advantage that it is more robust to outliers when 856 

computing EC. 857 

The DCM model was then specified for each participant. Because we were interested in ipsilateral 858 

connections (with the exception of the contralateral connections involving the cerebellum), we set a 859 

prior with zero mean and zero variance for those connections that we wanted to exclude from our 860 

models. Estimates of parameter uncertainty were computed by extracting the diagonal of the 861 

covariance matrices for each individual connection (these estimates were used in the EC LASSO 862 

models described below).  863 

After spDCM was computed for each subject individually, a structure was returned with the values in 864 

the matrix containing the mean value of the Gaussian distribution for the connections of interest 865 

(commonly known as A-matrix). These mean values comprise the connectivity parameters that 866 

indicate the individual-level effective connectivity from one brain region to another brain region. 867 

Subsequently, we computed a group-level DCM by assembling all subject-level DCMs and providing 868 

them as an input to the group DCM analysis using the framework of Parametric Empirical Bayes 869 

(PEB). PEB takes into account the estimated covariance between parameters and subject in a random 870 

effect analysis (see Supplemental Methods for technical details about PEB). Only extrinsic 871 

connections with posterior probabilities above 95% (which is equivalent to a log Bayes factor of 3) 872 

were considered, which corresponds to “strong evidence” within a Bayesian framework. 873 

 874 

Structural connectivity (SC) 875 

After preprocessing the diffusion data, we proceeded with the tractography analysis using FSL. First, 876 

we fitted a diffusion tensor model at each voxel, which returned the first three eigenvectors and 877 

corresponding eigenvalues, as well as a fractional anisotropy (FA) map. 878 

Because all subsequent analyses were done in diffusion space, we used the FA map to create all 879 

necessary transformation matrices from diffusion (dwi) to anatomical (T1w) and FreeSurfer spaces. 880 

The reason for using the FA image was because it had a more similar contrast to the anatomical 881 

image than non-weighted diffusion (B0) volumes, so it provided a slightly more accurate registration. 882 

All transformation matrices (diffusion -> FreeSurfer, FreeSurfer -> diffusion, diffusion -> T1w, T1w -> 883 

diffusion) were computed using boundary-based registration (BBR). 884 
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Next, we ran an analysis using “Bayesian Estimation of Diffusion Parameters Obtained using Sampling 885 

Techniques” (BEDPOSTX), which models crossing fibres within each voxel of the raw diffusion data, 886 

and creates the distributions on diffusion parameters at each voxel. 887 

Probabilistic tractography was then estimated using the samples from the distributions above. Note 888 

that tractography was run in diffusion space but the transformation matrix diffusion -> FreeSurfer 889 

was provided, since all ROIs were in FreeSurfer space and the pial surface was used as a stopping 890 

mask. 891 

For the tracking of fibres from cortical regions (i.e., ACC and PFC) we used surfaces instead of 892 

volumetric ROIs, as it has been suggested that seeding from surfaces is superior for the cortex
77

. 893 

However, for subcortical regions and cerebellar nuclei, we used the volumetric ROIs, since these 894 

regions tend to contain a high degree of anisotropy. 895 

As a means to guide tractography, we included the pial mask as a stopping mask, which effectively 896 

prevented tracts from crossing the grey/white-matter interface (which would be biologically 897 

implausible). Furthermore, for any seed regions, we further restricted tractography to exclude 898 

streamlines that did not stop by the target region. In other words, tracts were terminated and 899 

included in the total streamline count if and only if they reached the target region from the seed 900 

region. Finally, we also constrained tracts to bypass any regions containing non-white matter voxels 901 

(e.g., CSF, skull). 902 

One limitation with the approach described above is that it can only be meaningfully used for 903 

ipsilateral connections, as including the grey/white-matter interface will inevitably discard any 904 

streamlines that attempt to cross hemispheres. This is particularly problematic for connections 905 

involving the cerebellum, since anatomical connections of the cerebellar hemispheres involve to a 906 

large extent the contralateral cerebral hemisphere with cerebellar output crossing at the level of the 907 

brainstem
79

. In order to provide a similar degree of tractography accuracy for the cerebellar 908 

connections, we restricted the movement of the tracts to/from the cerebellar nuclei by (1) defining 909 

two stop masks - the pial surface ipsilateral to the cerebellar seed, and the cerebellum hemisphere, 910 

and (2) using the thalamus as a first waypoint, such that only tracts that initially run via the thalamus 911 

en route to the target ROI were considered valid streamlines. The rationale for point (2) is that 912 

output of the cerebellar nuclei is connected with various cortical areas via the thalamus
79

. 913 

 914 

Learning measures 915 

SCR measures 916 

For analysis of the SCR data we used the Matlab toolbox Psychophysiological Modelling (PsPM, 917 

version 6.0.0)
80

. Similar to analysis of fMRI data, PsPM creates an explicit mathematical "forward" 918 

model of the data-generating process with unknown parameters. This model is then inverted to yield 919 

the most likely parameter values, given the data. In the present case, we estimated the amplitudes  920 

of centrally generated CS- and US-related sudomotor responses on each trial, which serve as learning 921 

index. 922 

The raw data for each subject were initially trimmed to the task duration and, subsequently, filtered 923 

using an adaptive filtering algorithm with varying amount of time points, such that an optimal 924 

number could be determined that maximally reduced gradient artefacts. Subsequently, residual 925 

artifacts in the filtered data were detected using an automated quality assessment procedure81. 926 

Finally, each dataset was visually checked for residual artifacts that may have been missed by the 927 
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automated artifact detection tool, which were marked by one of three researchers with extensive 928 

training in preprocessing SCR data. Any detected artefact periods were logged and later ignored 929 

during data analysis. Participants with an excessive amount of artifacts were excluded from further 930 

statistical analysis, which was agreed by the three researchers, who were blinded to the results of 931 

the actual analysis. Note that most of these exclusions were the result of failed recordings due to 932 

technical difficulties with the equipment or sudden abortion of the scanning session. In total, 56 933 

acquisition and 79 extinction datasets were excluded due to flat or extremely coarse SCR data (see 934 

Fig. S13 for examples of typical excluded datasets). 935 

After preprocessing, data for all but one study (S6) were analysed with a standard non-linear model82 936 

using a canonical skin conductance response function83 (see also Supplemental Methods for a 937 

mathematical description of this model). This approach is appropriate for the CS—US duration used 938 

in these studies (around 7s). For all phases (acquisition, extinction and renewal), we modelled the 939 

following events: Context (fixed latency), CS onset (fixed latency), CS interval (flexible latency, 940 

sudomotor burst dispersion fixed at 0.3s) and US (fixed latency). 941 

In order to avoid bias, PsPM assumes the same event sequence for all trials, so in the case of non-942 

reinforced trials (no US), we modelled US omissions by adding an event of the same duration as the 943 

actual US in the place where the shock would have occurred during reinforced trials.  944 

To exclude the possibility that the estimated response to the CS could have been confounded by the 945 

response to the US (due to the overlap the elicited SCR), we applied two additional steps. First, we 946 

gradually decreased the modelled time interval between CS onset and US onset, to the point that 947 

there would be no differences between CS+US+ and CS+US-. Second, we ensured post hoc that the 948 

estimated sudomotor impulse did not overlap in time with the onset of the US. Both these 949 

procedures ensured that the response to the CS during reinforced trials was unlikely to have been 950 

contaminated by the response to the US. In consequence, there was no evidence for a difference 951 

between CS+US+ and CS+US- (in all projects, ps > .10, uncorrected), suggesting that our method was 952 

not biased by the US presence. 953 

For the acquisition phase of S6, in which the US duration was very long (14 seconds), we used a 954 

different approach. Crucially, the standard non-linear model requires assumptions on the number 955 

and distribution of anticipatory responses during the CS—US interval, and these have not been 956 

thoroughly tested and validated in long-interval paradigms. Hence, we opted for a method that 957 

dispenses with these assumptions and has been successfully used to estimate spontaneous 958 

fluctuations which can occur any time84. Specifically, we modelled one response per two seconds and 959 

estimated its amplitude and onset, across the entire acquisition. We then assigned the estimated 960 

sudomotor response to the experimental events that occurred at the same time. Next, we summed 961 

the estimated amplitude of all response occurring during each CS, and divided them by CS duration, 962 

thus providing a score of the anticipatory sudomotor activity per CS. 963 

Once the modelling was completed for all studies, the results for each trial were manually inspected 964 

to ensure that a proper model fit was attained. Finally, for each subject, we extracted the amplitude 965 

for each trial and for each phase of the experiment. These data were subsequently analysed using R 966 

(version 4.2.2; https://www.r-project.org/). 967 

Using each study’s parameter estimates, we then selected the conditions of interest that we wished 968 

to model (see Table S3). Some studies (e.g., S5) contained fewer than four non-reinforced CSs in their 969 

experimental design, which did not allow for an accurate assessment of learning across time. 970 

Therefore, we combined reinforced trials (CS+US+) and non-reinforced trials (CS+US-) in our 971 
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modelling. As noted above, we ensured the amplitude differences between CS+US+ and CS+US- were 972 

indistinguishable and were not significant in each single study. Further tests confirmed that the 973 

response amplitudes for CS+US+ were not contaminated by subsequent US responses (see Fig. S14). 974 

For generating a single participant-specific learning score that could characterise individual learning 975 

performance, we employed the following sequential steps (see Fig. 2B for a visual example): 976 

1) A theory-free polynomial regression of the 2nd order was conducted on the amplitude 977 

scores extracted from PsPM as the dependent variable; trial number, CS type and their 978 

interaction were used as predictors of interest. 979 

2) After the model fit, the model predictions were extracted for each participant. 980 

3) The difference in the predictions between each trial and the previous trial was calculated for 981 

each CS type separately and summed into a single score. 982 

Thus, each participant’s learning was characterised by two scores (one for CS+ and one for CS-). The 983 

difference between the CS scores (CS+ minus CS-) gave us an indication of the learning rate relative 984 

to the baseline. 985 

 986 

Behavioural responses 987 

The behavioural data in S4 consisted of binary decisions (whether a food item gave stomach-ache) as 988 

the dependent variable (see above for the description of the paradigm used in S4) and trial number 989 

as a predictor of interest.  990 

Because we were interested in individual rates of learning, we ran a multi-level logistic regression 991 

analysis using a random intercept for each participant and a random slope for trial number. The 992 

extracted coefficients included, for each participant, an intercept, representing the average learning, 993 

as well as a slope for trial number, representing the learning rate. 994 

However, the slopes derived from logistic regression models cannot be interpreted on their own, 995 

since we require at least two parameters (i.e., β0 and βtime) to determine the shape of the logistic 996 

curve. Specifically, β0 indicates the general ability of the subject, whereas βtime indicates the 997 

subject’s ability to learn through time without considering the overall skill. 998 

Therefore, we computed the probability of success for each participant and trial, and, subsequently, 999 

calculated the expected number of correct trials after 8 attempts (since there were always 8 unique 1000 

trial types in each experiment) based on these probabilities. Scores closer to 8 would mean that 1001 

participants learned successfully, whereas scores closer to 4 would mean that participants were at 1002 

chance levels. These scores were thus used as a proxy for how well each individual learned through 1003 

time (see Fig. S15 for a distribution of these scores). 1004 

This procedure was used for the analysis of acquisition, extinction and renewal. 1005 

 1006 

Predicting individual differences 1007 

The main goal of the present study was to predict the efficacy of learning and extinction by 1008 

multimodal brain connectivity patterns. This purpose required three learning parameters per 1009 

participant (one for acquisition, one for extinction and one for renewal) in each and every study 1010 

included in the present research. 1011 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2025. ; https://doi.org/10.1101/2025.05.04.651880doi: bioRxiv preprint 

https://doi.org/10.1101/2025.05.04.651880
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 

 

Different studies utilised different experimental paradigms, different number of trials/conditions, and 1012 

different dependent variables. To reduce this inhomogeneity, we used a modelling strategy such that 1013 

the different types of models that we implemented for the SCR and behavioural studies resulted in 1014 

similar learning parameters (i.e., a single score per subject that reflected learning across time during 1015 

acquisition, extinction and renewal). 1016 

Furthermore, we standardised the learning estimates on a study-by-experiment level, such that each 1017 

study/experiment had an average estimate of 0 and variance of 1. This step was important because it 1018 

brought all study-experiment combination into a common unit of measurement, while preserving 1019 

the relative distances between individuals within that study-experiment combination. 1020 

An additional advantage of this procedure is that it effectively helps to reduce differences across 1021 

studies due to unwanted site effects (e.g., scanner, sample size, etc.). To explore how much non-1022 

trivial variation was present after standardisation, we ran a simple nested multilevel model using 1023 

participant, study and experiment as separate random effects and the standardised learning variable 1024 

as the dependent variable. The variance estimates of the random effects “study” and “experiment” 1025 

were zero (see Table S3), indicating a degenerate model (i.e., the between-study and between-1026 

experiment variability is insufficient to justify their inclusion as random effects, over and above the 1027 

participant random effect). Because all models above were fitted using maximum likelihood, we 1028 

could compare models with and without the random effects of study and/or experiment. The results 1029 

of these model comparisons indicated equivalent AICs to using participant as the sole random factor 1030 

(see Table S4). 1031 

LASSO regression models were then built using learning score as the dependent variable, and either 1032 

FC, EC, or SC values as predictors of interest (i.e., in three separate models). Age and sex were used 1033 

as covariates in all models. 1034 

Regularised regression methods such as LASSO can be difficult to interpret in the presence of 1035 

multicollinearity since they will discard almost arbitrarily one of the collinear predictors. Thus, before 1036 

each LASSO model, we ran a multiple regression analysis in order to assess several multicollinearity 1037 

diagnostics, which included the variance inflation factor (VIF), tolerance, eigenvalues, condition 1038 

indexes and variance proportions. None of the models showed a sufficiently high degree of multi-1039 

collinearity that would warrant further investigation
85

 (see Fig. S17). 1040 

Each model was built either using all studies or a subset of studies (see Table S8). LASSO was run with 1041 

a k-fold cross-validation procedure (using the cv.glmnet function from the glmnet library), separately 1042 

for acquisition, extinction, and renewal. The function initially randomly splits the data into 10 equal 1043 

folds. For each fold (i.e., test data), the model is trained on the remaining nine folds and tested on 1044 

the held-out fold. This process is repeated for all 10 folds, ensuring that each fold serves as a test set 1045 

once. We then extract the average mean squared error (MSE) across these 10 different splits as a 1046 

measure of how well the model generated from the training data can predict the test data. 1047 

In addition to this inner cross-validation loop, we also included an outer loop of cross-validation (100 1048 

iterations) to ensure the stability of our LASSO results and determine the optimal regularization 1049 

parameter λ. Specifically, for each of the 100 outer-loop cross-validations, cv.glmnet was run with a 1050 

custom lambda path, and the MSE was computed across 10 folds. Each of the 100 cross-validations 1051 

used  different random splits of the data.  1052 

To maximise the chances of finding a lambda with the minimum cross-validation error, we 1053 

constructed a manual sequence of lambda values (i.e., the lambda path). This was done by supplying 1054 
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the function with a decreasing sequence of 1000 values from a maximal lambda to a minimum 1055 

lambda based on the following formulas: 1056 

 1057 

 1058 

 1059 

In other words, the entire cross-validation was repeated 1,000 times with different regularization 1060 

parameters λ, given by λpath computed above. Predictors were standardised within each fold prior to 1061 

model fitting to prevent leakage86. In addition, the L1-regularisation penalty was applied to all 1062 

predictors of interest except the covariates. The model was selected based on the lambda that 1063 

minimised the average MSE across these 100 outer-loop cross-validations. 1064 

The calculation of significance in regularised regression is controversial and an area of much debate, 1065 

as p-values and confidence intervals in LASSO models are biased due to the regularisation process 1066 

which is conducted to reduce variance in the parameter estimates87. Alternative methods to 1067 

compute p-values have been suggested, but none have been found robust. In the present study, we 1068 

defined the non-zero coefficients from LASSO, obtained via the cross-validation procedure described 1069 

above, as the “significant” variables under the penalised optimisation framework L1. Nevertheless, 1070 

we also provide standard p-values for each of the relevant connections from the LASSO models as 1071 

comparison. LASSO was run on one-hundred random samples of observations, counting the non-zero 1072 

connections, and testing each connection using binomial tests while correcting for multiple 1073 

comparisons (see Fig. S22).  1074 

Overall model performance was assessed for each experimental phase separately (acquisition, 1075 

extinction and renewal). First, the data was split in half, such that one half was used as the training 1076 

set and the other half as the testing set. Surrogate datasets were constructed by shuffling the 1077 

learning-connectivity correspondences of the testing sets across subjects. The mean-squared errors 1078 

(MSEs) were computed for the original and surrogate models, and the difference taken as a measure 1079 

of performance. Permutation tests were performed by comparing the original difference against the 1080 

null distribution, which was constructed by randomly multiplying the MSE differences by either -1 or 1081 

1 ten thousand times (see Table S11). 1082 

For EC models, we also used the previously-computed estimates of variability for each connection 1083 

(see above) as weights during model fit, so as to mimic the group-level PEB that also uses this 1084 

information. 1085 

Finally, in order to ensure our results were not due to the specific statistical LASSO method we used, 1086 

we re-ran all of our models using standard multiple regression, ridge regression and elastic net. The 1087 

LASSO coefficients were well within the range of the coefficients provided by these alternate 1088 

methods, and there were very robust positive correlations among the coefficients from the different 1089 

methods (Fig. S18). 1090 

 1091 

Generalisability analysis 1092 

After fitting our LASSO models, we examined the generalisability of these models by running four 1093 

different types of analyses.  1094 
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First, we grouped studies into two larger groups: a fear learning (FL; S1,S2,S3,S5,S6) and a predictive 1095 

learning (PL; S4) group. We applied Monte-Carlo cross-validation to extract mean-squared errors 1096 

(MSEs) of different combinations of the testing set participants. Next, we trained a LASSO model on 1097 

all data from one paradigm (e.g., fear learning; using the same lambda path to compute the optimal 1098 

lambda, as in the main LASSO model described above) and applied it to randomly selected 50% of 1099 

data from the other paradigm (e.g., predictive learning). This was repeated 100 times, and each time 1100 

we selected a different random subsample of 50% of the test data. The training data were always the 1101 

same across the 100 repetitions. As a result of the 100 repetitions, we obtained a distribution of MSE 1102 

values (blue error bars in Figures 4A-C).  1103 

Subsequently, we created surrogate datasets by randomly shuffling the relationship between 1104 

learning and connectivity estimates in the test (unseen) data. Again, we selected 50% of these 1105 

surrogate test and computed how well the model (based on the actual data in the training set) could 1106 

predict these test data, resulting in a surrogate MSE value. This was repeated 100 times with 1107 

different shuffles of the test data (black error bars in Figures 4A-C). 1108 

Then, the difference between the original and surrogate MSEs was used as a performance measure. 1109 

Statistical significance was then assessed via using non-parametric permutation tests. Specifically, 1110 

the null distribution was constructed by randomly multiplying each of the 100 MSE differences by 1111 

either -1 or 1 with equal probability and again averaging these differences. Next, we recalculated the 1112 

mean difference across 10,000 permutations, representing the expected variation if the observed 1113 

differences were due to chance. Finally, we compared the observed mean difference to this null 1114 

distribution and calculated a two-tailed p-value, which reflects the proportion of permuted means 1115 

that were as extreme as or more extreme than the observed difference. 1116 

In the second generalisability analysis, we employed a leave-one-group-out (LOGO) cross-validation 1117 

by splitting the data such that each training set comprised of all studies except one (e.g., S2-S6, but 1118 

not S1), and the left-out study (e.g., S1) used as the test data. A multiple regression was fit on the 1119 

training data and the model tested on the testing data. The Pearson correlation coefficient for the 1120 

predicted and observed values served as an index of generalisation. 1121 

In the third generalisability analysis, we enquired whether our model predictions could be useful to 1122 

ascertain task-based FC, since the model for the acquisition phase revealed some significant 1123 

functional connections with respect to the entire sample. For that purpose, we selected one fear 1124 

conditioning study for which task fMRI data were available (S2, two experiments, 152 participants) 1125 

and computed FC during both CS+ and CS- trials using all FC metrics described above and for all 1126 

combinations of the relevant ROIs. 1127 

A multiple linear regression model was constructed using the significant connections from the overall 1128 

LASSO model, and the model p-value was contrasted with one from a model that contained 1129 

randomly-selected connections. As the vast majority of FC studies computed Pearson correlation 1130 

coefficients as a proxy for connectivity, our FC predictors were also based on Pearson correlations. 1131 

Finally, to extrapolate our findings to potential new data, we also ran two types of analyses: 1132 

simulations and bootstrapping. For the simulations, we drew samples from a multivariate normal 1133 

distribution since the outcome variable of learning was normally distributed (Fig. S19). The 1134 

covariance matrices for each group (PL and FL) were computed for all numerical predictors and 1135 

covariates, to account for correlations among these variables. To accommodate potential variations 1136 

around the sample mean and covariance (as we would not expect the sample mean and covariance 1137 

matrix of subsequent studies to equal exactly the empirical estimates), we allowed some degree of 1138 
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sampling error around our estimates by unscaling the variables. For the bootstrapping, we 1139 

performed the same analysis as above but using bootstrap samples once with and once without 1140 

replacement. 1141 

Two multiple regression models were computed (one for FL and another for PL studies), using 1142 

learning as the outcome variable, the connectivity pairs from the selected LASSO models as 1143 

predictors and sex and age as covariates. One-hundred independent datasets were generated, each 1144 

contained 40 observations (we tested various other sample sizes [90, 300, 1000], but the results 1145 

were identical; see Fig. S20). For each dataset, r-squared from a multiple regression was computed 1146 

for the actual LASSO predictors, as well as for pseudo-random predictors that were not present in the 1147 

actual LASSO model but consisted of regions from the core learning network. 1148 

Importantly, we selected the exact same number of pseudo-random connections as the LASSO model 1149 

within each specific type of connectivity (e.g., if the LASSO model for effective connectivity contained 1150 

3 connections, the random model for the effective connectivity would also contain 3 connections not 1151 

present in the LASSO model).  1152 

We also computed connectivity within the lateral and fourth ventricle, as we did not expect these 1153 

regions to predict learning, and, thus, functioned as an additional baseline. 1154 
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