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Abstract 

Intelligence is associated with important life outcomes. Behavioral, genetic, structural, 

and functional brain correlates of intelligence have been studied for decades, but 

questions remain as to how genetics are related to trait expression and what 

intermediary role brain properties play. This study investigated these mediations in a 

representative sample of 434 individuals, comprising young and older adults. 

Polygenic scores (PGS) for intelligence were calculated. Resting-state EEG recordings 

were analyzed using graph theory quantifying functional connectivity across different 

frequencies. We tested whether global and local graph metrics like efficiency and 

clustering mediated the association between PGS and intelligence. PGS significantly 

predicted variance in intelligence and were related to frequency-specific graph metrics 

in areas predominantly located in parieto-frontal regions, which in turn were associated 

with intelligence. These findings, which are based on the first study linking PGS to 

intelligence using EEG-derived graph metrics, advance our understanding of the 

neurogenetics of intelligence.  
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Introduction 

Interindividual differences in human intelligence and their neural basis have fascinated 

researchers for over a century. Intelligence is commonly defined as „a very general 

mental capability that, among other things, involves the ability to reason, plan, solve 

problems, think abstractly, comprehend complex ideas, learn quickly, and learn from 

experience. It is not merely book learning, a narrow academic skill, or test-taking 

smarts. Rather, it reflects a broader and deeper capability for comprehending our 

surroundings – ‘catching on’, ‘making sense’ of things, or ‘figuring out’ what to do” 1. It 

is one of the most stable psychological traits 2,3 and has been found to correlate with 

important life outcomes like health 4, occupation 5, educational attainment 6, and 

mortality 2. Even though behavioral, genetic as well as structural, and functional brain 

correlates of human intelligence have been studied for decades, the exact 

neurogenetic mechanisms behind intelligent thinking are still hardly understood. 

Twin studies revealed that genetic factors can explain about 50% of interindividual 

differences in intelligence, making intelligence a highly heritable trait 7,8. On the 

molecular level, genome-wide association studies (GWAS) investigated the 

association of single-nucleotide polymorphisms (SNP) – which are changes in a single 

base pair on the genome – with intelligence 9–11. They revealed hundreds of SNPs 

significantly associated with intelligence and identified intelligence as a highly 

polygenic trait. Using the summary statistics of GWAS, it is possible to calculate a 

polygenic score (PGS), which summarizes the predisposition of a participant for a 

certain phenotype 12. PGS for intelligence are able to predict up to 7% of intelligence 

in independent validation samples 7,13. 

The most likely pathway through which SNPs influence intelligent thinking involves 

structural and functional brain properties. A prominent neuroscientific model of 

intelligence is the Parieto-Frontal Integration Theory (P-FIT). Originally postulated by 
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Jung and Haier (2007), this model states that intelligent thinking relies on efficient 

information transfer between brain regions across the cortex, with a crucial role for 

frontal and parietal cortices. Interestingly, while the P-FIT underlines the importance of 

efficient information transfer, the original studies did not include research concerning 

brain connectivity. One method of quantifying connectivity in neuroscience employs 

graph theory. A graph consists of nodes, which are spatially defined in the brain, and 

edges, which represent connections between these nodes 15. Two well-researched 

graph-theoretical metrics are efficiency, which quantifies how efficiently information is 

transferred between brain areas, and clustering, which quantifies the cliquishness of a 

brain network. Studies employing diffusion-weighted imaging (DWI) have identified 

that the brain’s global efficiency is positively related to intelligence 16–21. While some of 

these studies report associations to be strongest with nodes in the P-FIT network 17,19, 

other studies identified primarily areas outside of the P-FIT network 18. Also the 

clustering coefficient has been reported to be positively associated with intelligence 20, 

but other studies did not find this association 19.  

Resting-state functional magnetic resonance imaging (rsfMRI) studies investigating 

the relation between graph metrics and intelligence have come to inconclusive results. 

Van den Heuvel et al.22 were the first to report a positive association between 

intelligence and global efficiency, however, this effect could not be replicated in 

subsequent studies 23–25. On a regional level, Pamplona et al. 25 mainly reported areas 

associated with intelligence outside of P-FIT, while Hilger et al. 23 identified some P-

FIT regions. A recent multicenter study 26 found no robust associations between 

intelligence and global or regional graph metrics, concluding that static rsfMRI in 

combination with graph theory is not suited for investigating the neural underpinnings 

of intelligence. 
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One often-overlooked alternative to investigate the functional connectome is 

electroencephalography (EEG). Network Neuroscience Theory argues that 

intelligence is not only sustained by efficiency but also by the flexibility of brain 

networks 27. EEG, with its superior temporal resolution, might be better suited for 

understanding the neural mechanisms behind intelligence despite its lower spatial 

resolution compared to fMRI. EEG data can be segmented into different temporal 

frequencies, allowing for performing highly differentiated connectivity analyses for 

specific frequencies. 

Very few studies have investigated intelligence and its relation to resting-state EEG 

(rsEEG), exclusively conducted in young adults. Langer et al. 28 found that in male 

adults the EEG alpha band clustering and efficiency was positively associated with 

intelligence. Additionally, the parietal cortex was identified as a main hub of the rsEEG 

network. Subsequent studies, however, found contradictory results on the association 

between efficiency and clustering in EEG frequency bands and intelligence 29,30. The 

three studies differ in mean age and sex distribution, affecting result comparability. 

Large-scale cohort studies using rsEEG graph metrics are needed to better understand 

the association between the functional connectome and intelligence.  

Most rsfMRI and rsEEG studies have focused on children 22, young adults 23,25,26, or 

mixed samples 26, with no study investigating functional graph metrics related to 

intelligence exclusively in older adults. Since the human connectome changes with 

age 31 investigating older adults bridges a gap in deciphering the neural underpinnings 

of intelligence. 

Another often overlooked factor is the genetic basis of the functional connectome. 

Interestingly, the heritability of rsEEG connectivity metrics has been analyzed in a twin 

study. Smit et al. 32 reported that across different frequency bands, 46-89% of 

individual differences in the clustering coefficient are heritable, suggesting that 
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functional connectivity patterns have a stable biological basis and might be biomarkers 

of individual differences in brain functioning. Several other studies also support the 

heritability of different EEG measures 33–38. 

While the above-mentioned studies investigated the heritability and molecular genetic 

basis of EEG derived functional brain organization, the current study goes a step 

further, investigating the triad of molecular genetics, intrinsic electrophysiological 

connectivity and human intelligence. 

Several studies on structural brain properties 39–41 found that the surface area of 

parietal and frontal areas and the structural connectivity of frontal areas mediate 

between genetic variation and intelligence. Only one study has investigated the 

mediating effect of rsfMRI functional graph metrics 40, finding no brain areas where 

nodal efficiency mediated the effect of SNPs on intelligence, likely because rsfMRI 

nodal efficiency is not robustly associated with intelligence 26. As mentioned before, 

rsEEG may offer some advantages over rsfMRI, making it potentially better suited for 

investigating how genetics connect to intelligence. With this regard, exploratory 

mediation analyses were employed in this study to investigate whether frequency-

specific connectivity at a global level or at a regional level acts as a mediator between 

PGS of general intelligence (PGSGI) and intelligence. To investigate the robustness of 

the rsEEG connectivity properties, test-retest reliability of global and regional graph 

metrics was determined by means of intra-class correlation (ICC). An illustration of the 

pre-processing and analysis strategy is depicted in Figure 1. 

The present mediation study consisting of data of 434 individuals is, to the best of our 

knowledge, the largest dataset to investigate rsEEG graph metrics and their relation to 

intelligence. To account for age-related connectome changes, the sample was divided 

into young (n = 199, aged 20 – 40 years) and older adults (n = 235, aged 40 – 70 
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years). Ultimately, this study is the first mediation study to investigate whether rsEEG 

graph metrics are the missing link to how genes shape intelligence. 

 

 

Figure 1. Pre-processing and analysis strategy of the data sets. First, source localization was performed 

for the two electroencephalography (EEG) resting-state recordings with eyes closed (EC1 and EC2). 

Per hemisphere, 41 regions of interest (ROI) were defined, corresponding to 41 Brodmann areas (BA). 

Second, all-to-all inter-ROI functional connectivity was calculated as the spectral coherence (coh) for 

the beta (16-30 Hz), high alpha (11-13 Hz), low alpha (8-10 Hz), theta (4-7 Hz), and delta (1-3 Hz) 

frequency range for EC1 and EC2, resulting in two 82 x 82 resting-state networks per frequency band. 

Third, the global and nodal efficiency of EC1 and EC2 were calculated. EC1 coh and EC2 coh were 

used to calculate mean coherence (mean coh). Fourth, a factor analysis was carried out to extract g, 

the factor of general intelligence. Fifth, the polygenic score for general intelligence (PGSGI) was 

calculated. Sixth, graph theoretical metrics on the global (global efficiency, global clustering) and nodal 

level (nodal efficiency, local clustering) were computed and global as well as region-specific mediation 

analyses were performed with PGSGI as the independent variable, g as the dependent variable, and the 

graph theoretical metrics as respective mediators. Finally, the reliability of the graph's theoretical metrics 

was defined by calculating the intra-class correlation (ICC) of the global efficiency and global clustering 

and of the nodal efficiency and local clustering of each frequency band. 
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Results 

Partial correlations 

Partial correlations between g, global efficiency, and global clustering coefficient and 

partial correlations between the PGSGI, global efficiency, and global clustering for 

young and older adults are shown in the Supplementary Table S1 and S1. No 

correlation reached statistical significance (.097 ≤ p ≤ .999). Results for the whole 

sample can also be found in Supplementary Tables S1 and S2. 

 

Global mediation analysis  

Results of the global mediation analyses are shown in Supplementary Table S3 for 

young adults, older adults, and the full sample. None of the global mediation analyses 

reached statistical significance. Even though partial correlations conducted prior to this 

analysis did not reveal a significant effect, the global mediation analysis was still 

conducted, as the statistical significance of paths a and b alone is not a precondition 

for a significant mediation effect 42,43. 

 

Brain area-specific mediation analyses  

Nodal efficiency in young adults  

Results of the brain area-specific mediation analysis for nodal efficiency in young 

adults are depicted in Figure 2. All effect sizes with the respective Brodmann areas are 

available in Supplementary Table S4, S5, and S6. 
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Figure 2. Results of the region-specific mediation analysis via elastic-net regression (nodal efficiency) 

in young adults. Respective mediators were 41 cortical areas in the left and 41 cortical areas in the right 

hemisphere of five different frequency bands (delta, theta, low alpha, high alpha, and beta, from bottom 

to top). The figure shows the results from path a analysis (brain ~ PGS), path b analysis (g ~ brain), and 
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the mediation effect (from left to right). Brain surfaces are shown in lateral and sagittal views, for the left 

and right hemispheres. Positive effects are depicted in red and yellow, negative effects are depicted in 

blue. A full list of all effect sizes is available in Supplementary Table S4, Supplementary Table S5, and 

Supplementary Table S6.  

 

Beta  

PGSGI was associated with beta-frequency nodal efficiency in 25 cortical areas, 5 

showed a positive association, and 20 showed a negative association. Beta-frequency 

nodal efficiency was associated with g in 17 areas, 10 showed a positive association, 

and 7 showed a negative association. The beta-frequency nodal efficiency of right 

BA24 showed a positive mediation of the effect of PGSGI on g, and left BA26, left BA47 

and right BA30 showed a negative mediation effect. 

 

High Alpha 

PGSGI was associated with high alpha-frequency nodal efficiency in 26 cortical areas, 

while no areas were associated with g, resulting in no selected mediators.  

  

Low alpha 

PGSGI was associated with low alpha-frequency nodal efficiency in 42 cortical areas, 

while no areas were associated with g, resulting in no selected mediators.  

 

Theta 

PGSGI was associated with theta-frequency nodal efficiency in 47 cortical areas, 45 

showed a positive association, and 2 showed a negative association. Theta-frequency 

nodal efficiency was associated with g in 24 areas, 14 showed a positive association, 

and 10 showed a negative association. The theta-frequency nodal efficiency of left 

BA7, BA22, BA40 as well as right BA1, BA5, BA6, and BA26 showed a positive 
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mediation of the effect of PGSGI on g, and left BA3, BA33, BA36, and BA43 as well as 

right BA17, BA18, and BA46 showed a negative mediation effect. 

 

Delta 

PGSGI was associated with delta-frequency nodal efficiency in 29 cortical areas, while 

no areas were associated with g, resulting in no selected mediators.  

 

 

Nodal efficiency in older adults  

Results for the brain-area-specific mediation analysis for nodal efficiency in older 

adults are depicted in Figure 3. All effect sizes with the respective Brodmann areas are 

available in Supplementary Table S7, S8, and S9. 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 17, 2025. ; https://doi.org/10.1101/2025.01.17.633388doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.17.633388
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Figure 3. Results of the region-specific mediation analysis via elastic-net regression (nodal efficiency) 

in older adults. Respective mediators were 41 cortical areas in the left and 41 cortical areas in the right 
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hemisphere of five different frequency bands (delta, theta, low alpha, high alpha, and beta, from bottom 

to top). The figure shows the results from path a analysis (brain ~ PGS), path b analysis (g ~ brain), and 

the mediation effect (from left to right). Brain surfaces are shown in lateral and sagittal views, for the left 

and right hemispheres. Positive effects are depicted in red and yellow, negative effects are depicted in 

blue. A full list of all effect sizes is available in Supplementary Table S7, Supplementary Table S8, and 

Supplementary Table S9.  

 

Beta 

PGSGI was associated with beta-frequency nodal efficiency in 5 cortical areas, while 

no areas were associated with g, resulting in no selected mediators.  

 

High alpha 

PGSGI was associated with high alpha-frequency nodal efficiency in 2 cortical areas, 

while no areas were associated with g, resulting in no selected mediators.  

 

Low alpha 

PGSGI was associated with low alpha-frequency nodal efficiency in 8 cortical areas, all 

showed a negative association. Low alpha-frequency nodal efficiency was associated 

with g in 21 areas, 10 showed a positive association, and 11 showed a negative 

association. The low alpha-frequency nodal efficiency of right BA5, BA7, BA17, and 

BA28 showed a negative mediation of the effect of PGSGI on g, and no area showed a 

positive mediation effect. 

 

Theta 

PGSGI was associated with theta-frequency nodal efficiency in 24 cortical areas, all 

showed a negative association. Theta-frequency nodal efficiency was associated with 

g in 20 areas, 12 showed a positive association, and 8 showed a negative association. 
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The theta-frequency nodal efficiency of right BA19 showed a positive mediation of the 

effect of PGSGI on g, and right BA5, BA7, BA17, BA28, and BA37 showed a negative 

mediation effect. 

 

Delta 

PGSGI was associated with delta-frequency nodal efficiency in 13 cortical areas, while 

no areas were associated with g, resulting in no selected mediators.  

 

Local clustering in young adults  

Results for the brain-area-specific mediation analysis for local clustering in young 

adults are depicted in Figure 4. All effect sizes with the respective Brodmann areas are 

available in Supplementary Table S10, S11, and S12. 
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Figure 4. Results of the region-specific mediation analysis via elastic-net regression (local clustering) 

in young adults. Respective mediators were 41 cortical areas in the left and 41 cortical areas in the right 

hemisphere of five different frequency bands (delta, theta, low alpha, high alpha, and beta, from bottom 
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to top). The figure shows the results from path a analysis (brain ~ PGS), path b analysis (g ~ brain), and 

the mediation effect (from left to right). Brain surfaces are shown in lateral and sagittal views, for the left 

and right hemispheres. Positive effects are depicted in red and yellow, negative effects are depicted in 

blue. A full list of all effect sizes is available in Supplementary Table S10, Supplementary Table S11, 

and Supplementary Table S12.  

 

Beta 

PGSGI was associated with beta-frequency local clustering in 24 cortical areas, while 

no areas were associated with g, resulting in no selected mediators.  

 

High alpha 

PGSGI was associated with high alpha-frequency local clustering in 48 cortical areas, 

while no areas were associated with g, resulting in no selected mediators.  

 

Low alpha 

PGSGI was associated with low alpha-frequency local clustering in 78 cortical areas, 

all showed a positive association. There were no areas whose low alpha-frequency 

local clustering was associated with g and thus no selected mediators.  

 

Theta 

PGSGI was associated with theta-frequency local clustering in 78 cortical areas, all 

showed a positive association. Theta-frequency nodal efficiency was associated with 

g in 23 areas, 10 showed a positive association, and 13 showed a negative 

association. The theta-frequency local clustering of left BA7, BA8, BA9, BA19, BA22, 

BA38, BA40 and BA45 as well as right BA6 and BA26 showed a positive mediation of 

the effect of PGSGI on g, and left BA3, BA25, BA26, BA33, BA36, BA43, and BA47 as 

well as right BA18, BA31, BA41, BA46 and BA47 showed a negative mediation effect. 
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Delta 

PGSGI was associated with delta-frequency local clustering in 31 cortical areas, while 

no areas were associated with g, resulting in no selected mediators.  

 

Local clustering in older adults  

Results for the brain-area-specific mediation analysis for local clustering in older adults 

are depicted in Figure 5. All effect sizes with the respective Brodmann areas are 

available in Supplementary Table S13, and S14. 
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Figure 5. Results of the region-specific mediation analysis via elastic-net regression (local clustering) 

in older adults. Respective mediators were 41 cortical areas in the left and 41 cortical areas in the right 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 17, 2025. ; https://doi.org/10.1101/2025.01.17.633388doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.17.633388
http://creativecommons.org/licenses/by-nc-nd/4.0/


hemisphere of five different frequency bands (delta, theta, low alpha, high alpha, and beta, from bottom 

to top). The figure shows the results from path a analysis (brain ~ PGS), path b analysis (g ~ brain), and 

the mediation effect (from left to right). Brain surfaces are shown in lateral and sagittal views, for the left 

and right hemispheres. Positive effects are depicted in red and yellow, negative effects are depicted in 

blue. A full list of all effect sizes is available in Supplementary Table S13 and Supplementary Table S14. 

 

Beta 

PGSGI was associated with beta-frequency nodal efficiency in 6 cortical areas, while 

one area was associated with g, but not with PGSGI, resulting in no selected mediators. 

 

High alpha 

PGSGI was associated with high alpha-frequency nodal efficiency in 10 cortical areas, 

while no areas were associated with g, resulting in no selected mediators.  

 

Low alpha 

PGSGI was associated with low alpha-frequency nodal efficiency in 17 cortical areas, 

while no areas were associated with g, resulting in no selected mediators.  

 

Theta 

PGSGI was associated with theta-frequency nodal efficiency in 34 cortical areas, while 

no areas were associated with g, resulting in no selected mediators.  

 

Delta 

PGSGI was associated with delta-frequency nodal efficiency in 11 cortical areas, while 

no areas were associated with g, resulting in no selected mediators.  

 

Reliability  
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Table 3 shows the ICC of global efficiency and global clustering coefficient for all 

frequency bands in young and older adults. In both groups, the reliability of global 

efficiency in the delta, theta, and low alpha bands can be rated as good, and global 

efficiency of the high alpha and beta bands can be described as excellent 44. The 

reliability of the global clustering coefficient can be rated as good for all frequency 

bands in both groups.  

 

Table 3. Test-retest reliability of global graph metrics for global efficiency (E) and the global clustering 

coefficient (C) as measured by ICC in young (Eyoung, Cyoung) and older adults (Eolder, Colder). All effects 

were significant at the p < .001 level.  

 Delta Theta Low alpha High alpha Beta 

Eyoung 0.82 0.85 0.86 0.93 0.94 

Cyoung 0.78 0.78 0.78 0.86 0.89 

Eolder 0.81 0.87 0.90 0.94 0.94 

Colder 0.75 0.83 0.84 0.88 0.89 

 

Figures 6 and 7 show the ICC of nodal efficiency and local clustering for 41 cortical 

areas in each hemisphere for young and older adults, respectively. A complete list of 

areas and ICC effect sizes can be found in Supplementary Table S15 for young adults 

and in Supplementary Table S16 for older adults. Results for the whole sample are in 

Supplementary Table S17 for global metrics, and for nodal metrics in Supplementary 

Table S18 and Supplementary Figure 5. The delta band was the only frequency where 

areas showed poor reliability (ICC < 0.5). However, this was only the case for 3.7% of 

areas considering local clustering, and for 9.8% or 8.5% of areas considering nodal 

efficiency, for young and older adults respectively. Areas with poor reliability are 

primarily located around the posterior cingulate cortex and precuneus.  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 17, 2025. ; https://doi.org/10.1101/2025.01.17.633388doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.17.633388
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Figure 6. Test-retest reliability of nodal efficiency (Ei) and local clustering (Ci) as 

measured by ICC in young adults. Lighter colors indicate higher reliability.  

 

 

Figure 7. Test-retest reliability of nodal efficiency (Ei) and local clustering (Ci) as 

measured by ICC in older adults. Lighter colors indicate higher reliability.  

 

Results for the whole sample 

All results for the whole sample can be found in the Supplementary Material 

(Supplementary Results section). Partial correlation coefficients between g, global 

efficiency, and the global clustering coefficient are shown in Supplementary Table S1 

and between PGSGI, global efficiency, and the global clustering coefficient in 

Supplementary Table S2. Supplementary Table S3 displays the results of the global 
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mediation analysis. Results for the brain-area-specific mediation analysis for the full 

sample for nodal efficiency are depicted in Supplementary Figure S3 and for local 

clustering in Supplementary Figure S4. Test-retest reliability of global graph metrics is 

shown in Supplementary Table S17. Brain-area-specific reliability results can be found 

in Supplementary Figure S5 and Supplementary Table S18. 

Discussion 

The current study aimed to investigate how genetic variation influences intelligence by 

affecting the brain connectome. Using resting-state EEG data, we performed an 

exploratory mediation analysis to investigate the relationship between genes, graph 

theoretical measures, and intelligence in young and older adults. EEG, unlike fMRI, 

allows for frequency-specific analyses of neural activation with high temporal 

resolution. The study revealed brain areas with relevant frequency-specific nodal 

efficiency and local clustering properties in young adults, and brain areas with relevant 

frequency-specific nodal efficiency properties in older adults. The detected mediators 

carry information about the relevant brain regions and the relevant frequency bands 

involved in intelligent outcomes. In line with other neuroimaging studies 23,25,26,32, the 

association between PGS and intelligence was not mediated by global graph metrics. 

Our findings suggest that local graph metrics are suited for studying the genetic 

pathways influencing intelligence. Three frequency bands are of particular interest, 

namely beta, theta, and low alpha. With its superior temporal resolution and frequency-

specificity, EEG is a promising tool for understanding the functional connectome 

underlying intelligence. rsEEG offers more robust connectivity measures, considering 

the higher reliability if compared to the same metrics for rsfMRI 26. The mean test-retest 

reliability across all frequency bands and age groups was 0.89 for global efficiency and 

0.83 for global clustering. In comparison, Metzen et al.26 reported mean intra-class 
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correlation coefficients for fMRI across three data sets of 0.54 for global efficiency and 

0.34 for global clustering. 

In young adults, beta nodal efficiency in frontal and parietal regions mediated between 

PGSGI and intelligence. A high PGS links to increased efficiency in regions involved in 

semantic processing 45,46 and working memory 47,48 (ventrolateral prefrontal cortex 

(vlPFC)), and to decreased efficiency in regions involved in broader cognitive functions  

(dorsal anterior cingulate cortex (dACC) and retrosplenial cortex (RSC)) 49,50. 

Apparently, subjects with a high PGSGI exhibit less efficient connectivity in regions not 

directly related to intelligence. The relationship between beta oscillation and 

intelligence is not well understood and studies on intelligence-related functions report 

inconsistent findings 51, emphasizing the need for further research. 

In young adults, theta nodal efficiency in frontal, parietal, occipital, and temporal 

regions mediates between PGS and intelligence. A higher PGS links to higher 

efficiency in all regions except the primary visual cortex (V1), a low-level visual 

structure, which is not involved in higher-order cognitive processes. Suppression of 

redundant, low-level visual information is more pronounced in more intelligent 

individuals 52, which is in line with the assumption that V1 does not require to be highly 

efficiently connected to many other nodes within an intelligence-related network. 

Frontal and parietal areas are closely linked to fluid intelligence and a transcranial 

electrical stimulation (tES) study found higher fluid intelligence scores when theta 

transcranial alternating current stimulation (tACS) was applied to these regions 53. The 

effect was stronger for parietal theta tACS, which is in line with the relatively high 

number of parietal mediators identified in our study. Theta is involved in long-range 

neural communication 54 which might explain the wide distribution of theta mediators 

over the cortex. Moreover, theta plays a key role in executive control and working 
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memory maintenance 55–57. For task evoked activity, it has been shown that mid-frontal 

theta connectivity during later stages of higher order processing in a cognitive control 

task explains 65% of variance in intelligence differences 58.  Frontal and parietal 

regions mediate 70% of the association between genetic variants and intelligence, with 

a large overlap between theta-nodal efficiency and theta-local clustering regions. Theta 

local clustering mediated between PGSGI and intelligence in areas essential for 

intelligence and related functions, such as the prefrontal cortex (dlPFC, mPFC) 59,60, 

Broca’s and Wernicke’s areas, along with various motor, sensory, and emotion- and 

memory- related regions. Taken together, theta appears to be a significant pathway 

for the genetic influence on intelligence. 

In older adults, low alpha nodal efficiency mediated the genetic effect on intelligence 

in the superior parietal lobule (SPL), which is involved sensory information integration 

61, V1, and the entorhinal cortex (EC), which is important for learning and memory 62. 

Interestingly, no contribution of frontal areas was found. A higher PGS links to lower 

efficiency in V1 and EC. The fact that low alpha acts as a gateway in older adults, 

whereas beta mediates in young adults, might reflect an age-related shift from fast, 

localized communication towards a slower and broader communication. This 

assumption aligns with the observed age-related neural dedifferentiation, which 

describes a reduction of functional specificity of neural processing with aging 63. The 

aging brain decreases in within-network connectivity and increases in between-

network connectivity 64, especially in the frontal-parietal control system and the cingulo-

opercular control system, two networks that are closely linked to fluid intelligence 27. 

Theta nodal efficiency mediates the effect of PGS on general intelligence in six parietal, 

occipital, temporal, and occipital-temporal regions. Interestingly, four of these six 

regions also serve as mediators within the low alpha frequency range, suggesting that 
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with age, fewer mediators influence intelligence but across a broader frequency range. 

PGS is associated with decreased theta efficiency in parts of the SPL, while in young 

adults the SPL is positively associated with PGS. This reversal possibly reflects age-

related functional network changes. V1 consistently shows reduced nodal efficiency 

with high PGS in both age groups, underlining its limited role in intelligence networks. 

Across the two age-groups, 44% of areas that link PGS to intelligence belong to the P-

FIT model. However, 56% of all mediators are outside P-FIT, consistent with studies 

identifying intelligence-related brain regions beyond P-FIT 18,40. It is worth noting that 

even though morphologically certain brain areas are not associated with P-FIT, from a 

connectivity perspective, they still might play a role in intelligence, suggesting that 

intelligence is not limited to the parieto-frontal network but that a much broader neural 

architecture underlies human intelligence. 

In total, 25 mediators were identified in young adults, and only 6 mediators were found 

in older adults, likely due to an age-related decrease in nodal efficiency 31. Older adults 

also showed a shift from frontal and parietal mediators towards parietal and occipital 

mediators, raising the question of whether the gateway through which genetic variants 

modulate intelligence changes during the lifespan, to functionally compensate for aging 

processes 16,65. While the lack of frontal mediators in older adults may seem surprising 

at first glance given the well-established posterior-anterior shift in aging model 

(PASA)66, it is important to note that PASA has been observed in task-based studies. 

Interestingly, a recent study successfully replicated PASA via resting-state EEG 67 . In 

line with our results, the authors additionally found reduced intra-area frontal 

connectivity and an increased inter-area connectivity in older adults compared to 

young adults. This reduction in segregation fits our assumption that with age, slow 

oscillations may promote broader, cross-area communication, reflecting neural 
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dedifferentiation. Notably, V1, cuneus, and the SPL remained consistent mediators 

across the lifespan. These regions are all involved in sensory processing or integration 

suggesting that sensory functions are crucial for maintaining cognitive ability. The 

pathway through which genetics shape behavior might be as dynamic as the brain 

itself, always striving for the most functional connection and our findings suggest that 

functional connectivity properties of sensory rather than frontal regions might underpin 

lifelong intelligence. 

One limitation is that our dataset does not allow to investigate the association between 

SNPs, functional connectivity, and intelligence across the lifespan. Future studies 

should investigate potential reorganization of brain networks over time by means of 

longitudinal designs. It remains unclear whether intelligence in older adults relies on 

the same networks as in younger subjects. Research on the P-FIT model did not 

differentiate between age groups, and prior studies typically involved younger 

participants 14,72–75. Future research could benefit from a multi-modal approach, as 

Thiele et al. 76 have shown that overlapping as well as separate information is captured 

by different metrics. The complexity of intrinsic brain dynamics might be not fully 

captured by a narrow set of graph metrics, and  a broader range of parameters, 

including complexity values, microstate characteristics 76 or other graph metrics such 

as modularity 77, might shed further light on the complex yet fascinating association 

between the genome, the brain, and human intelligence. 

To the best of our knowledge this study is the first to investigate the mediating effects 

of EEG-derived graph metrics in specific brain regions on the association between 

genetic variation and intelligence in two different age groups. Our findings suggest 

that functional theta connectivity of frontal, parietal, temporal, and occipital areas 

provides a missing piece in the link between genetic variation and general 
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intelligence. Different mediating effects between young and older adults raise the 

question of whether genetic pathways for intelligence evolve over the lifespan, 

highlighting the need for future research. Our findings are a crucial step forward in 

decoding the neurogenetic underpinnings of intelligence, as they identify specific 

electrophysiological networks that relate polygenic variation to intelligence. 

 

Methods 

Participants 

The data stem from the ongoing large-sample cohort study Dortmund Vital Study 

(Clinicaltrials.gov: NCT05155397) conducted by the Leibniz Research Centre for 

Working Environment and Human Factors at the Technical University Dortmund 

(IfADo) that investigates the age-dependent development of cognitive functions in adult 

humans 78. The sample includes healthy subjects from any educational level, coming 

from a Western society. The health criteria were defined in such a way that smoking, 

alcohol consumption, being overweight, and/or a history of disease without severe 

symptoms did not exclude subjects from participating in the study. This approach of 

using more liberal participation criteria increases the representativeness of the sample 

78. Participants were recruited by newspaper ads, public media, companies, and public 

institutions. In total 599 participants were available. After excluding participants who 

lacked a major part of data subtests for the calculation of g (see 2.3. Computation of g 

factor), calculation of PGSGI (see 2.4. Genotyping and polygenic scores), excluding 

participants without EEG data and controlling for outliers (see 2.7. Statistical analysis) 

the final data set included 434 participants (mean age: 44.4 years, SD: 14 years, age 

range: 20 – 70 years, 275 women). Before any data acquisition, all participants gave 

written informed consent, and the study conformed to the Declaration of Helsinki. In 

addition, it was approved by the local Ethic Committee of IfADo (A93-1). 
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To test whether associations between PGS, rsEEG and g vary between age groups, 

we analyzed the data for young adults and older adults separately. The younger 

sample comprised 199 participants (mean age: 31.23 years, SD: 6.73 years, age 

range: 20 – 40 years, 131 women) and the older sample comprised 235 participants 

(mean age: 55.65 years, SD: 6.84 years, age range: 40 – 70 years, 144 women). The 

cut-off value of 40 years was chosen based on the age distribution of the sample (see 

Supplementary Figure S1). The subgroups were analyzed in the same manner. 

Results for the full sample are shown in Supplementary Figures S3-S5.  

 

Cognitive measures 

Participants completed an extensive cognitive test battery covering the essential 

aspects of intelligence. The test battery is described in the following and was used to 

calculate g, the factor of general intelligence (See 2.3. Computation of g factor). For 

detailed description of the tests please see Gajewski et al. 79. 

 

The Verbal Learning and Memory Task  

The Verbal Learning and Memory Task (VLMT) 80 tests verbal declarative episodic 

memory. Here the experimenter presents 15 words from a learning list by reading them 

out loud to the participant. This is done five times and after every presentation, the 

participants have to reproduce the words from the learning list. Then, an interference 

word list with 15 new words is presented and has to be reproduced. Right after this, 

the original learning list has to be reproduced once more. 30 minutes later the 

participants are asked to repeat the learning list again. Lastly, participants are 

presented with a recall list, containing the items from the learning list, the interference 

list, and 20 new words. The items are presented orally, and the participants have to 

recognize the words belonging to the learning list. Scores are the total number of words 
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from the learning list that have been reproduced in the five trials (VLMT_1_5) and the 

number of recognized words from the recognition list minus errors (VLMT_R-E).  

 

D2-R  

The D2-R measures attentional endurance and processing speed 81. Participants are 

presented with 14 lines consisting of 47 characters each. The characters are the letters 

“d” and “p” with one to four dashes above and/or below each letter. Participants have 

20 seconds per line to cross out the target stimulus, which is a “d” with two dashes. 

The test score is the total number of correctly crossed-out target stimuli. 

 

Stroop Test 

The color-word interference test 82 measures the processing speed and inhibition of 

incongruent information 83. Firstly, color words (e.g. “blue”) are presented in black and 

have to be read as quickly as possible. Secondly, colored bars are presented, and the 

color has to be named as quickly as possible (Stroop_2). Thirdly, participants see color 

words that are printed in a color that does not match the color word (e.g. the word 

“blue” printed in green). The participants have to indicate the color the word is written 

in (Stroop_3). Each of the three blocks consists of 36 items. 

 

Trail Making Test 

The Trail Making Test (TMT) consists of two different tests 84. In TMT-A, participants 

have to connect the numbers 1 to 25 in ascending order. In TMT-B, the numbers 1 to 

13 and the letters A to L have to be connected alternately in ascending order. While 

TMT-A measures processing speed, TMT-B measures parallel processing and the 

ability to switch between tasks.   
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Digit Span 

The Digit Span test measures memory span and working memory 83. First, the 

experimenter presents a series of digits with increasing length orally. The participants 

have to repeat the series of digits in the correct order (DS_f). Reproduction of two 

series of the same length counts as a correct response, the maximum length of the 

series is nine digits.  

Second, the presented series of digits must be reproduced in reversed order. The 

maximum length of series is eight digits (DS_b). Again, the reproduction of two series 

of the same length counts as a correct response. The sum of DS_f and DS_b 

comprises the score DS_total.  

 

Multiple Choice Vocabulary Test  

The Multiple Choice Vocabulary Test (MWT-B) measures verbal knowledge as a 

component of crystalized intelligence 85. Participants are exposed to 37 items with five 

words each. Only one of the five words is a meaningful word. The participants have to 

mark the meaningful word. The items get increasingly difficult over time. The total count 

of correctly marked words comprises the score.  

 

Word Fluency 

Word fluency (WF) is subtest six from the performance testing system 

(Leistungsprüfsystem (LPS)) that measures verbal processing speed and cognitive 

flexibility 86. The participants are given three letters (F, K, R) and are asked to name 

as many words starting with these letters as possible. The participants have one 

minute for every letter and must write the words down (WF_W). In a second test, the 

participants say the words with the initial letters (B, F, L) (WF_S). The spoken version 
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of the WF test was introduced to reduce age-related differences in writing speed. The 

test scores are the total number of non-repeated words written or spoken.  

 

Logical reasoning 

The third subtest of the performance test system (LPS-3) measures logical reasoning, 

i.e., the ability to think logically as a component of fluid intelligence. The aim is to 

indicate the incongruent element in each row of eight logically arranged symbols. The 

highest score to be achieved is 40. The respondent was given five minutes to complete 

the test. The number of correctly indicated rows was used as dependent variable. 

 

Mental rotation 

The seventh subtest of the performance test system (LPS-7) requires spatial rotation 

of letters in the plane, i.e., an ability attributed to fluid intelligence. The task consists of 

crossing out those letters that are recognized as mirror images. The time limit for this 

subtest is two minutes. A maximum of 40 recognized symbols can be achieved. The 

number of correctly crossed out letters was used as dependent variable for 

performance evaluation. 

 

Computation of g factor 

The described cognitive tests have been used to generate the g-factor. After excluding 

all participants with missing values in one or more of the included variables 

(VLMT_1_5, VLMT_R-E, D2-R, Stroop_2, Stroop_3, TMT-A, TMT-B, DS_total, LPS_3, 

LPS_7, DS_f, DS_b, MWT, WF_S, WF_W), 520 participants remained for the factor 

analysis. To extract residuals from the test scores, individual regression analyses were 

calculated with age, sex, age*sex, age2, and age2*sex. Age2 was added to control for 
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quadratic relations with age 87. Subsequently, the residuals were z-standardized (M = 

0, SD = 1).  

First, an exploratory factor analysis (EFA) with the estimation method “minimum 

residual” and “oblimin” factor rotation (an oblique, non-orthogonal rotation method) was 

used to assess the g-factor. The EFA yielded four factors, interpreted as verbal 

memory (including VLMT_1_5, VLMT_R-E), attention (including D2-R, Stroop_2, 

Stroop_3, TMT-A, TMT-B, DS_total, LPS_3, LPS_7), working memory (including DS_f, 

DS_b, MWT), and verbal fluency (including MWT, WF_S, WF_W). 

Second, we employed a second-order confirmatory factor analysis. Supplementary 

Figure S2 depicts the postulated confirmatory factor model of g, including z-

standardized factor loadings and covariances between subtests. This model was used 

to calculate g for every participant. Model fit was determined via multiple indices. The 

chi-squared statistic, assessing if the difference between the variance-covariance 

matrix implied by the model and the observed variance-covariance model is zero 88, 

reached statistical significance (X2(82) = 194.529, p < .001). However, this alone does 

not indicate a poor fit, as X2 is heavily influenced by sample size and can reach 

significance in large sample sizes even though the model fit is good 89,90. Root Mean 

Square Error of Approximation (RMSEA) and Standardized Root Mean Square 

Residual (SRMR) both indicate a good model fit (RMSEA = 0.051, SRMR = 0.042), 

while the Comparative Fit Index (CFI) and the Tucker-Lewis Index (TLI) closely miss 

the threshold of 0.97 (CFI = 0.950, TLI = 0.936).  

 

Genotyping and polygenic scores 

Blood samples were collected from the participants in EDTA blood test tubes. DNA 

isolation was carried out on 5 ml of whole blood using the QIAamp DNA Blood Maxi 

Kit (Qiagen, Hilden, Germany). Quality of the DNA samples was 
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ensured via NanoDrop (260/280 nm ratio) (Thermo Fisher Scientific Inc), and samples 

were stored at -20 °C.  Illumina’s Infinium Global Screening Array 3.0. with MDD and 

Psych content (Illumina, San Diego, CA, USA) were used for genotyping. Genotyped 

SNPs with a minor allele frequency (MAF) lower than 0.05, deviating from Hardy-

Weinberg equilibrium (HWE) with p<1*10-6 and missingness higher than 2%, were 

excluded. Participants showing sex mismatch, an SNP-missingness rate higher than 

2%, and a heterozygosity rate higher than |0.2| were excluded. Furthermore, genetic 

relatedness filtering was carried out on an SNP-subset showing high genotyping 

quality (HWE p>0.02, MAF>0.2, SNP-missingness of 0%) and pruned for linkage 

disequilibrium (r2=0.1). Pairs of cryptically related subjects with a pi hat value greater 

than 0.2 were applied to exclude subjects at random. Principal components (PCs) were 

computed to control for population stratification. Any participant deviating by more than 

|4.5| standard deviations from the mean on at least one of the first 20 PCs was also 

excluded. All filtering steps were performed using PLINK 1.9 91. 

The samples’ filtered genotype data was submitted for imputation to the Michigan 

Imputation Server 92 using the phase 3v5 (hg19) European population of the 1000 

Genomes Project as a reference panel, and an R2 filter of 0.3. We chose Eagle 2.4 for 

phasing and Minimac4 for imputation. After a final MAF<0.05 filtering step, 6,014,815 

SNPs remained available for analysis. 

We calculated genome-wide polygenic scores (PGS) for all participants, using publicly 

available summary statistics of general intelligence 11. General intelligence PGS 

(PGSGI) was calculated by adding together the weighted sum of all trait-associated 

alleles across SNPs with a high imputation quality in the summary statistics (INFO 

score > 0.9) present in both the summary statistics and in the imputed sample using 

PRSice2.3.3 12. Specifically, we computed best-fit PGSGI using standard settings by 

carrying out multiple linear regression iteratively at different SNP-p-value thresholds 
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ranging from 5*10-5 to 1 (increasing the threshold each time by 5*10-5) to predict g. 

While the PGSGI served as predictors, age, sex, as well as the first four genetic PCs 

were entered as covariates. The PGSGI with the greatest predictive power (i.e., with 

the largest R2 increment when entered a model containing only the covariates) were 

chosen for further analysis. So, the resulting PGS explained the most phenotypical 

variance among all tested models. Since this approach involves parameter 

optimization, the best-fit model’s p-value is overfitted. To account for this, we used 

PRSice-2’s permutation-based approach to correct for multiple tests that consist of 

repeating the above procedure 10,000 times but shuffling the phenotype data with 

each iteration. PGSGI best predicted g’s variance (4%, pcorrected < 0.001) in our sample 

at a p-value threshold of 0.328. 

 

EEG recordings and pre-processing 

The Dortmund Vital Study comprises a battery of mental tasks that are distributed over 

two different days, with each testing session lasting around two hours, and involving 

EEG recordings 78. Before and after each test session resting-state EEG is recorded. 

Each recording consists of two minutes resting-state EEG with eyes closed and with 

eyes open each, and EEG recording session 1 and 2 are always around two hours 

apart. For the present analysis, only the two EEG data sets recorded on the first testing 

day were used, as the EEG recordings on the second day used different EEG recording 

systems 93. To keep the conditions consistent with existing literature on resting-state 

EEG functional connectivity and human intelligence, only the eyes-closed condition 

was used for further analyses 28–30. A total of 438 of the participants with genetic and 

behavioral data also had complete resting-state EEG data. The EEG data employed 

in this study were recorded using a 64-channel actiCap system and a BrainAmp DC-

amplifier (Brain Products GmbH; Munich, Germany) with a 1000 Hz sampling rate. An 
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online 250 Hz low-pass filter was applied and FCz was used as an online reference. 

Electrodes were placed in line with the 10-20 system and impedances were < 10 kΩ 

78. EEG data preprocessing was performed using custom MATLAB scripts with 

EEGLab 94. The recordings of all resting-state conditions and sessions were merged 

and subsequently resampled at 200 Hz. The data was filtered using a Butterworth 

bandpass filter ranging from 1 to 30 Hz with the order 4. Channels with insufficient data 

quality were detected and rejected based on kurtosis and probability criteria. After that, 

excluded channels were interpolated and all data were re-referenced to the common 

average reference. The continuous data were then segmented into epochs of eight 

seconds in length with an overlap of 50 %. Epochs with bad data quality were identified 

and excluded from further analysis using EEGLab’s automated rejection function with 

default parameters. An individual component analysis (ICA) was performed, and 

independent components (ICs) reflecting artifacts were identified using ICLabel 95 and 

subsequently removed. ICs were regarded as reflecting artifacts when ICLabel 

classified an IC with a probability of less than 0.3 to reflect brain activity, as well as 

when an IC was classified with a probability of more than 0.3 to reflect ocular activity. 

The inter-areal functional connectivity was calculated based on the brain activity at 

reconstructed sources using MNE python 96. Since no individual T1 MRI scans and 

electrode positions were available, MNE templates were used to set up the source 

space, the boundary element model, and the electrode montage. Based on these, the 

forward model was then computed. The inverse operator was calculated for each 

dataset using an individual noise covariance matrix. Source reconstruction was 

performed using the dSPM method 97, a minimum norm approach that has previously 

been used for the source reconstruction of resting-state data 29,30. The PALS-B12 atlas 

98 was used for the parcellation of the sources in 41 regions of interest (ROI) per 

hemisphere that correspond to Brodmann areas (Brodmann areas not included in the 
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PALS-B12 atlas: BA12, BA13, BA14, BA15, BA16, BA34, BA48, BA49, BA50, BA51, 

BA52). Source activation for these ROIs was extracted using MNEs 

“extract_label_time_cource” method with the “mean_flip” mode. All-to-all inter-ROI 

functional connectivity was calculated as the spectral coherence for the delta (2 to 3 

Hz), theta (4 to 7 Hz), low alpha (8 to 10 Hz), high alpha (11 to 13 Hz), and beta (16 to 

30 Hz) frequency range using MNEs “spectral_connectivity_time” method. Alpha was 

divided into low alpha and high alpha given that past studies repeatedly revealed 

correlations between alpha and intelligence, especially within the upper alpha band 

28,99–101. Whereas splitting alpha into sub-bands has proven to deliver additional 

information in terms of cognitive abilities, many studies have not demonstrated 

significant associations between intelligence and sub-bands of other frequencies, such 

as beta or gamma, during resting-state EEG 28–30. Hence, we have chosen to only 

divide alpha. For each ROI-to-ROI spectral coherence, the mean spectral coherence 

of 30 segments was estimated. 30 segments of on average 8 seconds and a sampling 

rate of 200 Hz result in a total of approximately 48000 data points, which is notably 

higher if compared to an fMRI dataset of the same length. 

 

Graph metrics  

Global and nodal efficiency was calculated using the Brain Connectivity Toolbox and 

in-house MATLAB code 102. We constructed two 82 x 82 resting-state networks per 

frequency band (delta, theta, low alpha, high alpha, beta), one for the first eyes-closed 

recording and one for the second eyes-closed recording (i.e., before and after the 

participants performed the two-hour battery of mental tasks). As the conditions during 

and between the two resting-state recordings were the same for all subjects, we 

combined these two matrices into one 82 x 82 matrix by calculating the mean 

coherence of each connection. Thus, we analyzed five 82 x 82 networks. To prune 
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redundant and weak connections we employed Holm-Bonferroni pruning with a 

threshold of 0 for each network (� = 0.01, one-tailed) as described by Ivković et al. 103. 

This pruning procedure prevents some of the drawbacks of fixed thresholds like 

including spurious connections or excluding important connections. Here we used the 

variance of all weights in the upper triangle of the matrix of all participants to test if an 

edge weight is a spurious connection or not. This was done for all connections. For 

example, a vector containing participants’ edge weights for the edge between left BA10 

and left BA11 was tested against zero and removed from the network if it did not differ 

significantly from zero. This was done for all edges and led to no connections being 

removed from the networks.  

 

We used MATLAB R2021b and the Brain Connectivity Toolbox to compute global 

efficiency (E), global clustering (C), nodal efficiency (Ei), and local clustering (Ci) 

indices. Global efficiency E quantifies how efficiently – fast but also using little energy 

– the brain areas communicate throughout the brain 15. Large edge weight and short 

path length lead to an increase in global and nodal efficiency. A shortest path is defined 

by the minimal number of edges that are needed to connect two nodes within a 

network. The distance matrix d contains all shortest paths between all node pairs. This 

matrix is created by calculating the inverse of the weighted adjacency matrix and 

running Dijkstra’s algorithm 104. The efficiency of a single brain area is called the nodal 

efficiency Ei. It reflects the average inverse shortest path length between a node i and 

all other nodes j in the network G. Global efficiency reflects the average inverse 

shortest path length between all nodes i and all other nodes j in G:  
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The global clustering coefficient C is a measure to quantify the “cliquishness” of a 

network and reflects the network’s local connection segregation 102. The local 

clustering coefficient Ci reflects the probability that two randomly selected neighbors of 

node i are also neighbors of each other. Ci is calculated by dividing the real connections 

between a node’s neighbors by all possible connections. The global clustering 

coefficient C is defined as the mean of all local clustering coefficients. 

𝐶 = 	
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!∈&
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Statistics and Reproducibility 

All statistical analyses were performed using RStudio 1.3.1093 105 and R version 4.1.0 

106. Participants that deviated more than three interquartile ranges from the sample’s 

global efficiency, global clustering coefficient, or g were classified as outliers and 

removed from the analyses. Four participants were excluded by this step resulting in 

a final sample size of 434 participants. 

 

Partial correlations 

We calculated partial correlations between g and the PGSGI and the brain metrics 

global efficiency and global clustering coefficient (two-sided). For this, we used the 

partial.cor function from RcmdrMisc 107. Control variables were age and sex. 

 

Global mediation analyses 

Mediation models were calculated using the lavaan package 108. The dependent 

variable was g, and the independent variable was the PGSGI. Respective mediators 

were global efficiency or global clustering. We controlled for age, sex, and the first four 

principal components of the population stratification.  
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Brain area-specific mediation via elastic-net regression 

The next step was to investigate if there is a subset of brain areas whose connectivity 

may act as a mediator of the association between PGSGI and g. For this, we applied 

exploratory mediation analysis by regularization (xmed) 109,110. Since this method 

employed regularization instead of frequentist methods, there are no p-values to 

determine whether or not a brain area can be considered a viable mediator 111. 

Regularization means that a penalty term is put onto effect sizes which shrinks small 

effect sizes to zero. All effect sizes that remain non-zero after regularization are viable 

mediators. To prevent overfitting, the penalty is calculated using k-fold cross-validation. 

Here, the sample is split into k subsamples. One subsample is used as the testing set 

while all other subsamples serve as training data. This is repeated k times, with all 

subsamples serving as testing sets once. As this method is calculating a mediation, 

two different elastic-net models are calculated, one for path a (brain ~ PGSGI) and one 

for path b (g ~ brain). The mediation coefficient is obtained by multiplying a and b. 

Thus, both the association between brain and PGSGI as well as brain and g must be 

classified as non-zero for the mediation coefficient to be non-zero. All non-zero 

mediation coefficients are selected as mediators. As the penalty pushed all effect sizes 

close to zero, the effect sizes derived by elastic-net are biased. Thus, we followed the 

suggestion by Serang & Jacobucci 110 and re-estimated the effect sizes of selected 

mediators using lavaan. We used elastic-net regression as it is a combination of lasso 

and ridge regression and is suitable if one does not have a clear expectation regarding 

all mediating variables. Regularized elastic-net regression has already been 

successfully applied in recent neuroimaging-based intelligence research 26,40,112.  

 

Specific mediation models  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 17, 2025. ; https://doi.org/10.1101/2025.01.17.633388doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.17.633388
http://creativecommons.org/licenses/by-nc-nd/4.0/


We used the xmed function from the regsem package 1.9.3. 113 for all brain area-

specific mediation analyses. For the analysis in this manuscript, the cross-validation 

fold was set to k = 10 (default).  Control variables were sex, age, and the first four 

principal components of the population stratification. The threshold for detecting non-

zero mediation effects was set to 0.001 and � was set to 0.5, corresponding to a full 

elastic-net penalty. To investigate the effect of paths a and b separately, we defined a 

threshold of 0.01 for identifying non-zero effects. The threshold for paths a and b were 

set higher as the product of the two is smaller since both are always below one. The 

dependent variable was g, and the independent variable was the PGSGI. Respective 

mediators were nodal efficiency or local clustering coefficient of 41 cortical areas in the 

left and 41 cortical areas in the right hemisphere. We calculated one mediation model 

per graph metric and per frequency band, resulting in ten mediation models in total: 

PGSGI – delta nodal efficiency – g, PGSGI – theta nodal efficiency – g, PGSGI – low 

alpha nodal efficiency – g, PGSGI – high alpha nodal efficiency – g, PGSGI – beta nodal 

efficiency – g, PGSGI – delta local clustering – g, PGSGI – theta local clustering – g, 

PGSGI – low alpha local clustering – g, PGSGI – high alpha local clustering – g, PGSGI 

– beta local clustering – g.  

 

Test-retest reliability of graph metrics  

As we had two EEG recordings taken approximately 2 hours apart from each other, 

we used both the first eyes-closed recordings (EC1) and the second eyes-closed 

recording (EC2) to investigate test-retest reliability. We calculated the ICC (3,1) with a 

two-way mixed effect model 93. First, we calculated the ICC of the global efficiency and 

global clustering coefficient of the five frequency bands. Second, we calculated the 

ICC of nodal efficiency and local clustering of the five frequency bands for all 82 cortical 

areas. 
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