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Extinction learning does not erase previously established memories but 28 

inhibits the expression of fear by the formation of new memory traces that are 29 

strongly context-dependent. Previous human neuroimaging studies using 30 

representational similarity analysis revealed several core properties of memory 31 

traces during fear learning, including their tendency to generalize beyond the 32 

initial context – a process described as “cue generalization” – and their 33 

reliance on sensory rather than conceptual representational formats. How fear 34 

memories are altered during extinction learning, however, remains largely 35 

unknown. To address this question, we used a novel experimental paradigm 36 

involving multiple cues and contexts in each experimental phase, which 37 

allowed us to disentangle the effect of contingency changes (i.e., reversal 38 

learning) from the disappearance of unconditioned stimuli during extinction 39 

learning. Our data show that contingency changes during reversal induce 40 

memory traces with distinct representational geometries characterized by 41 

stable activity patterns across repetitions in the precuneus, which interact with 42 

specific context representations in medial and lateral prefrontal cortex. The 43 

representational geometries of these traces differ strikingly from the 44 

generalized patterns established during initial fear learning and persist in the 45 

absence of an unconditioned stimulus during extinction. Interestingly, 46 

increased levels of prefrontal context specificity predict the subsequent 47 

reinstatement of fear memory traces, providing a possible mechanistic 48 

explanation for the clinical phenomenon of fear renewal. Our findings show 49 

that contingency changes induce novel memory traces with distinct 50 

representational properties that are reminiscent to those observed during 51 

episodic memory formation and contrast with the generalized representations 52 

of initial fear memories. These results shed new light on the neural 53 

mechanisms underlying the malleability of memories that support cognitive 54 

flexibility, and contribute to conceptual frameworks of extinction learning during 55 

the treatment of anxiety disorders. 56 

 57 

1. Introduction  58 
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Fear acquisition refers to the process of learning the association between a 59 

neutral conditioned stimulus (CS) and an aversive unconditioned stimulus 60 

(US). It is typically a rapid and robust process that may create long-lasting fear 61 

memories which may persist after the threats have passed. This persistence 62 

can be evolutionarily advantageous, since it may be adaptive to rather respond 63 

to a false alarm than to miss a potential threat. However, the inability to 64 

eventually suppress a fear response in the absence of actual danger can 65 

become dysfunctional and has been proposed as a key etiological factor in 66 

conditions such as anxiety disorders and post-traumatic stress disorder (Milad 67 

& Quirk, 2012). 68 

 While fear acquisition is rapid and robust, the suppression of fear 69 

responses in the absence of the US – i.e., fear extinction – is strongly context-70 

dependent and more flexible (Maren et al., 2013; Milad & Quirk, 2012; Liu et 71 

al., 2024). This is demonstrated by the phenomena of spontaneous recovery, 72 

renewal, and reinstatement, all of which show that the original fear memory 73 

can resurface under certain conditions (Bouton, 2002). Specifically, fear 74 

renewal reflects a return of fear responses after a change in context, showing 75 

that extinction does not erase the original fear memory trace but inhibits it 76 

selectively within the extinction context (Greco & Liberzon, 2016). Learning 77 

and extinction do not occur solely in relation to fear, but also during processes 78 

of reinforcement learning and reversal, i.e., related to contingency changes 79 

more generally (Schiller et al., 2008; Wisniewski et al., 2023). In these cases, 80 

the context dependency of extinction may support cognitive flexibility since 81 

appropriate actions can be selected according to situational demands (Schiller 82 

& Delgado, 2010; Chaby et al., 2019; Xin et al., 2024). Contrastingly, the 83 

context specificity of extinction learning may be detrimental during treatments 84 

of anxiety disorders if therapy-induced fear reductions do not generalize 85 

beyond the therapeutic setting (Maren et al., 2013). 86 

 Much of our fundamental understanding of the formation of fear memory 87 

traces and their suppression during extinction learning has been derived from 88 

optogenetic studies in rodents, which describe the formation and modification 89 
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of fear engrams with valence and context representations in the amygdala and 90 

hippocampus, respectively (Liu et al., 2015; Josselyn et al., 2015; Redondo et 91 

al., 2014). These studies further showed that extinction learning depends on 92 

plasticity of hippocampal context representations (Redondo et al., 2014) as 93 

well as on prefrontal cortex engrams (Ramanathan et al., 2018; Gu et al., 94 

2022; Lissek & Tegenthoff, 2024). 95 

In humans, neuroimaging studies have reported activation of a canonical 96 

“fear network” during acquisition (with prominent roles of the dorsal anterior 97 

cingulate cortex and insula, and a more inconsistent role of the amygdala; 98 

Fullana et al., 2016) and recruitment of the hippocampus and ventromedial 99 

prefrontal cortex during extinction (Fullana et al., 2016; Maren et al., 2013), 100 

putatively reflecting context dependency and safety learning, respectively 101 

(Maren, Phan, & Liberzon, 2013). Indeed, meta-analyses have shown that 102 

despite some moderate overlap, the brain regions involved in extinction 103 

learning differ substantially from those involved in fear acquisition (Maren et 104 

al., 2013). Moreover, reversal – involving a change in contingencies rather 105 

than the mere absence of a US – particularly engages regions involved in 106 

prediction error detection and cognitive flexibility, such as the dorsomedial and 107 

lateral prefrontal cortex (Wisniewski et al., 2023; Xin et al., 2024). This points 108 

towards the inhibition of previously threatening stimuli via executive control 109 

during reversal, a process not typically observed in standard extinction 110 

paradigms. 111 

While functional magnetic resonance imaging (fMRI) activation studies 112 

have been instrumental in identifying the brain regions involved in fear learning 113 

and extinction, they are insensitive to the patterns of neural activity that 114 

underlie the stimulus-specific representations of threat cues and contexts. By 115 

contrast, representational similarity analysis (RSA; Kriegeskorte et al., 2008) 116 

has emerged as a powerful tool to track the fate of distinct memory traces over 117 

time (Rissman and Wagner, 2012; Heinen et al., 2024). This method has 118 

provided important novel insights into the representational signatures and 119 

“geometries” (i.e., patterns of representational distances among items) that 120 
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support the formation, stabilization, and possible subsequent refinement and 121 

modification of memory traces. This has informed our understanding of the 122 

basic mechanisms of learning and memory, while also contributing to more 123 

mechanistic theories of memory distortions in mental disorders. For example, 124 

Visser et al. (2011, 2013) demonstrated that trial-by-trial similarities of blood 125 

oxygen level-dependent (BOLD) patterns increase during associative learning 126 

in regions of the fear network such as the anterior cingulate cortex (ACC), 127 

ventromedial prefrontal cortex (vmPFC), or superior frontal cortex. Similar 128 

representational signatures of “cue generalization” – i.e., increasing levels of 129 

similarity among the memory traces of different items associated with the 130 

same valence – were observed in the amygdala related to memories of a 131 

stressful episode (Bierbrauer et al., 2021), as well as in sensory regions and 132 

areas of the salience network for aversive trauma-analogue stimuli (Kobelt et 133 

al., 2024). Further, RSA can be used to study how specific neural patterns are 134 

reactivated during memory, a mechanism also referred to as “encoding-135 

retrieval similarity” (e.g., Kobelt et al., 2024). For example, Hennings et al. 136 

(2022) showed a selective reactivation of fear versus extinction memories in 137 

the medial PFC and hippocampus depending on encoding context. 138 

Furthermore, the similarity between the neural patterns that are elicited across 139 

different presentations of a given item (within-item similarity) describes how 140 

stable the representation of a particular item is, regardless of its valence, and 141 

has been linked to episodic memory performance (Xue et al., 2010). Finally, 142 

the difference between within-item stability and between-item generalization, 143 

commonly referred to as “specificity” (Xue et al., 2010; Xue et al., 2013; Zheng 144 

et al., 2018; Sommer et al., 2022), quantifies the amount of item-specific 145 

information in a representation. This representational property could be 146 

particularly fruitful as a means to study the influence of fear reversal or 147 

extinction on context representations, which have never been analyzed in 148 

previous fear and extinction learning studies. 149 

Here, we aimed to systematically investigate how the neural 150 

representations of cues and contexts change across different phases of 151 
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learning, including acquisition, reversal, and two consecutive test phases with 152 

new contexts and previous contexts, respectively, in which all cues are 153 

extinguished. We presented the CS cues in each phase in multiple different 154 

contexts that changed between phases, which allowed us to study the role of 155 

context specificity by comparing the similarity between same vs. different 156 

contexts in each phase (see Figure 1).  157 

We hypothesized that the representational geometry of CS cues 158 

changes across learning phases, reflecting the inhibition of fear memories 159 

during reversal, as well as the formation of novel memories of cues with 160 

updated contingencies. More specifically, we expected cue generalization 161 

effects in regions of the fear network, item stability in areas related to episodic 162 

memory, and context-specific representations in the hippocampus and PFC. 163 

Finally, we hypothesized context specificity during reversal to influence the 164 

reinstatement of fear memory traces during the test phases. 165 

 166 

2. Methods 167 

Participants 168 

Thirty healthy participants were recruited via flyers and the online recruitment 169 

systems of the Faculty of Psychology at Ruhr University Bochum. As our 170 

paradigm consisted of a two-day design with two experimental phases per 171 

day, we observed some attrition between experimental phases. The number of 172 

participants with usable fMRI data for each phase was as follows: N = 30 for 173 

the first phase of day one, N = 29 for the second phase of day one, N = 27 for 174 

the first phase of day two, and N = 26 for the second phase of day two. 175 

fMRI data were considered unusable in case of incomplete data (i.e., 176 

absence of data for all four phases, n = 9) or significant head movement (>2.5 177 

mm in any direction, n = 2). The final sample for fMRI analysis included 24 178 

participants (8 males) between 18 and 32 years of age (mean: 24.69 years, 179 

standard deviation: 3.6). All participants provided written informed consent 180 

before participation and were unaware of the aims of the experiment. The 181 

procedures were performed in accordance with the tenets of the Declaration of 182 
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Helsinki and were approved by the ethical review board of the Faculty of 183 

Psychology at Ruhr University Bochum. 184 

 185 

General procedure and stimuli 186 

The paradigm was administered to participants in the MRI scanner and 187 

consisted of four experimental phases spanning two days. To make the 188 

experiment more engaging for participants, they were presented with the 189 

narrative of “Nina the unlucky backpaper” and asked to play as the character 190 

Nina. During her fictitious trip, Nina would visit different places represented by 191 

videos of natural scenes that served as contexts. In each of these places, Nina 192 

would interact with different household appliances (the CS). Due to her 193 

misfortune, many of these items contain a serious defect and their 194 

manipulation could result in a mild electric shock (the US) experienced by 195 

Nina, and by extension, the participant. The four experimental phases 196 

therefore correspond to different trips undertaken by Nina during her travels. 197 

Each phase comprised 128 trials with a similar structure: presentation of 198 

a context (video showing a natural scene) for 2 seconds, followed by the CS 199 

(household appliance) embedded within the context for 1 second. US 200 

expectancy responses were then collected during a 2.5-s periodusing a 4-point 201 

Likert scale, followed by the delivery (or absence) of an electric shock (US). 202 

Finally, participants saw a fixation cross which served as an inter-stimulus 203 

interval (Figure 1A). A total of eight CSs were presented during each phase 204 

and the same CSs were shown in all phases. The experimental phases 205 

differed in the way the CSs were associated with a US as well as in the 206 

possible contexts in which the CSs were embedded. 207 

Visual stimuli were presented using the Presentation software package 208 

(Neurobehavioral Systems, Berkeley, CA, USA). Electrical stimulation was 209 

delivered using a constant voltage stimulator (STM2000, BIOPAC Systems, 210 

Goleta, CA, USA) with electrodes attached to the index finger. The intensity of 211 

the electrical stimulation was adjusted individually for each participant prior to 212 

the fear acquisition phase until the participants rated the sensation as 213 
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unpleasant but not painful. A fixation cross was displayed with a jittered 214 

duration (7–9 s) to serve as an intertrial interval at the end of each trial. Each 215 

experimental phase contained 128 trials in total. 216 

 217 

Fear acquisition, reversal, and test 218 

The first day of the experiment comprised two phases: fear acquisition and 219 

fear reversal (Figure 1B). During the fear acquisition phase, four CSs were 220 

associated with a US (CS+, each with 50% reinforcement rate), while the other 221 

four were never followed by a US (CS-). Every CS was associated with four 222 

different contexts (natural scenes) with equal likelihood (i.e., across the 128 223 

trials of each phase, every combination of a given CS with a given context 224 

occurred four times). 225 

The fear acquisition phase was immediately followed by the fear 226 

reversal phase. Here, participants were again presented with the same CS. 227 

However, half of the CSs that were associated with a US during fear 228 

acquisition were no longer associated with a US (CS+-), while the other half 229 

remained associated with a US (CS++). Similarly, half of the CS- cues became 230 

associated with a US (CS-+), while the other half remained unassociated with 231 

a US (CS--). Both CS++ and CS-+ were reinforced in 50% of the trials. 232 

The second day of the experiment comprised two experimental test 233 

phases: test in new contexts and test in acquisition/reversal contexts (Figure 234 

1B). During these two test phases, no CS was ever associated with a US. 235 

They differed in terms of the context videos in which the CS were embedded, 236 

with new contexts for the “testnew” phase, and the previous acquisition and 237 

reversal contexts for the “testold” phase (see details below). 238 

To summarize: CS++ cues were associated with a US during both fear 239 

acquisition and reversal; CS-+ cues were not associated with a US during fear 240 

acquisition but were during reversal; CS+- cues were associated with a US 241 

during fear acquisition but not during reversal; CS-- cues were not associated 242 

with a US during either fear acquisition or reversal. 243 

 244 
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Relationship between CS types, contexts, and experimental phases 245 

In all phases, the context videos and CS types were presented in different 246 

pseudorandom orders, such that they were orthogonal to each other. The first 247 

and last trials of each participant contained unreinforced cues. The assignment 248 

of each cue to the four possible CS types was counterbalanced across 249 

participants, as was the assignment of the type of videos used as context 250 

during each experimental phase. 251 

Regarding context: One set of four videos was shown during fear 252 

acquisition (set “A”); a new set of four videos was shown during fear reversal 253 

(set “B”); a third set of eight videos was shown during test in new contexts (set 254 

“C”); during test in previous contexts, the four videos shown during fear 255 

acquisition and the four videos shown during fear reversal were shown (sets 256 

“A” and “B”, in pseudorandom order). 257 

Thus, the two test phases differed only in the type of context videos 258 

shown (new contexts during testnew and previously shown contexts testold). 259 

  260 

Behavioral data analysis 261 

Participants provided US expectancy ratings after the presentation of each CS 262 

by indicating on a 4-point Likert scale how dangerous or safe they perceived 263 

the CS to be. We examined the influence of experimental phase and CS type 264 

on US expectancy by averaging US expectancy ratings across all trials of a 265 

given CS type, separately for each experimental phase and participant. This 266 

resulted in four (averaged) US expectancy ratings per experimental phase per 267 

participant. 268 

As the repeated measures ANOVA assumption of sphericity was not 269 

met by the data (Mauchly test; W=0.39, p<0.0001), we chose a linear mixed 270 

effects (LME) approach to predict the effect of cue type and learning phase on 271 

US expectancy, with subject as a random effect. We used Satterthwaite's 272 

approximation of degrees of freedom, as implemented in the R packages lme4 273 

and lmerTest, using the restricted maximum likelihood method. Studies have 274 

shown that this provides a more robust estimate of degrees of freedom, and 275 
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thus reduces the risk of type 1 error, compared to other methods such as the 276 

likelihood ratio test (Luke, 2017). 277 

As a preview of our behavioral data analyses, the results showed that 278 

participants quickly learned the contingencies in the initial fear acquisition 279 

phase, as well as the contingency changes introduced between the 280 

subsequent reversal and testnew/testold phases (Figure 1B). 281 

 282 

MRI data collection 283 

All MRI data were acquired on a Philips 3T Achieva scanner 3T MRI scanner 284 

(Philips Healthcare, Best, Netherlands). MRI data were acquired with 285 

simultaneous recording of electroencephalographic data and skin conductance 286 

recording in the scanner, which are not presented here. A reference structural 287 

T1 image was acquired on the first experimental day (TR = 817 ms, TE = 3.73 288 

ms, 240x240x223 matrix, 1-mm isotropic resolution). All four experimental 289 

learning phases were performed in different sessions in the scanner with a 290 

BOLD echo-planar imaging sequence (TR = 2.53 s, TE = 30 ms, 96x96x46 291 

matrix, 2.5-mm isotropic resolution). Further, phase-opposite scans (with 292 

otherwise identical acquisition parameters) were acquired for each task 293 

session to correct for distortion artifacts. 294 

 295 

MRI preprocessing 296 

MRI data were preprocessed with fMRI prep (Esteban et al., 2017; 297 

https://fmriprep.org/) as described below. 298 

 299 

Anatomical data preprocessing 300 

The T1-weighted (T1w) image was corrected for intensity non-uniformity 301 

with N4BiasFieldCorrection (Tustison et al. 2010), distributed with ANTs 302 

2.2.0 (Avants et al. 2008), and used as T1w reference throughout the 303 

workflow. The T1w-reference was then skull-stripped with 304 

a Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), 305 

using OASIS30ANTs as the target template. Brain tissue segmentation of 306 
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cerebrospinal fluid, white-matter, and gray-matter was performed on the brain-307 

extracted T1w using fast (FSL 5.0.9, Zhang, Brady, and Smith 2001). Brain 308 

surfaces were reconstructed using recon-all (FreeSurfer 6.0.1, Dale, Fischl, 309 

and Sereno 1999), and the brain mask estimated previously was refined with a 310 

custom variation of the method to reconcile ANTs-derived and FreeSurfer-311 

derived segmentations of the cortical gray-matter of Mindboggle (Klein et al. 312 

2017). Volume-based spatial normalization to standard space 313 

(MNI152NLin2009cAsym) was performed through nonlinear registration 314 

with antsRegistration (ANTs 2.2.0), using brain-extracted versions of both the 315 

T1w reference and T1w template. The following template was selected for 316 

spatial normalization: ICBM 152 Nonlinear Asymmetrical template version 317 

2009c (Fonov et al. (2009). 318 

 319 

Functional data preprocessing 320 

For each of the four BOLD sessions per subject, the following preprocessing 321 

was performed. First, a reference volume and its skull-stripped version were 322 

generated using a custom methodology of fMRIPrep. Head-motion parameters 323 

with respect to the BOLD reference (transformation matrices, and six 324 

corresponding rotation and translation parameters) were estimated before any 325 

spatiotemporal filtering using mcflirt (FSL 5.0.9, Jenkinson et al. 2002). BOLD 326 

sessions were slice-time corrected using 3dTshift from AFNI 20160207 (Cox 327 

and Hyde 1997, RRID:SCR_005927). A deformation field to correct for 328 

susceptibility distortions was estimated based on fMRIPrep’s fieldmap-329 

less approach. The deformation field results from co-registering the BOLD 330 

reference to the same-subject’s T1w-reference with its intensity 331 

inverted (Wang et al. 2017; Huntenburg 2014). Registration was performed 332 

with antsRegistration (ANTs 2.2.0), and the process regularized by 333 

constraining deformation to be nonzero only along the phase-encoding 334 

direction, and modulated with an average fieldmap template (Treiber et al. 335 

2016). Based on the estimated susceptibility distortion, a corrected echo-336 

planar imaging reference was calculated for a more accurate co-registration 337 
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with the anatomical reference. The BOLD reference was then co-registered to 338 

the T1w reference using bbregister (FreeSurfer), which implements boundary-339 

based registration (Greve and Fischl 2009). Co-registration was configured 340 

with six degrees of freedom. The BOLD time-series were resampled onto the 341 

following surfaces (FreeSurfer reconstruction nomenclature): fsnative. The 342 

BOLD time-series (including slice-timing correction when applied) were 343 

resampled onto their original, native space by applying a single, composite 344 

transform to correct for head-motion and susceptibility distortions. These 345 

resampled BOLD time-series will be referred to as preprocessed BOLD in 346 

original space, or just preprocessed BOLD. The BOLD time-series were 347 

resampled into standard space, generating a preprocessed BOLD session in 348 

MNI152NLin2009cAsym space. First, a reference volume and its skull-stripped 349 

version were generated using a custom methodology of fMRIPrep. Several 350 

confounding time-series were calculated based on the preprocessed BOLD: 351 

framewise displacement (FD), DVARS and three region-wise global signals. 352 

FD was computed using two formulations following Power et al. (2014) 353 

(absolute sum of relative motions) and Jenkinson et al. (2002) (relative root 354 

mean square displacement between affines). FD and DVARS were calculated 355 

for each functional session, both using their implementations 356 

in Nipype (following the definitions by Power et al. 2014). The three global 357 

signals were extracted within the cerebrospinal fluid, white matter, and whole-358 

brain masks.   359 

 360 

Univariate analyses 361 

We estimated activation differences between the different CS types for each 362 

experimental phase by computing 1st level contrasts of interest (e.g.: CS+>CS-363 

), followed by a 2nd level group analysis with a FWE correction at the cluster 364 

level. Significant cluster size was estimated in a non-parametric manner using 365 

nilearn’s non_parametric_inference function, using 10,000 permutations. 366 

Analyses were constrained within a grey matter mask. 367 

 368 
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RSA 369 

We applied RSA to investigate the representational geometries of cues and 370 

contexts throughout the experiment (Figure 1C). Since this involved studying 371 

the neural representations during a relatively rapid event-related design, we 372 

chose to base the estimation of neural pattern similarity not on the raw BOLD 373 

data, but rather on General Linear Model (GLM) estimates of the trial-specific 374 

BOLD response, an approach known as beta-series modeling (Rissman et al., 375 

2004; Turner et al., 2012). Specifically, we used a Least Square Separate 376 

(LSS) approach (Abdulrahman and Henson, 2012), which consists of fitting 377 

one GLM for each trial, in which the tested trial is the condition of interest while 378 

controlling for all other trials. We chose this approach over the Least Square 379 

All method, which consists of fitting a single GLM including all trials (and using 380 

each trial as a condition of interest), as LSS has been shown to be superior for 381 

dealing with collinearity, especially with fast event-related designs 382 

(Abdulrahman and Henson, 2012; Mumford et al., 2012), which applies to our 383 

paradigm. 384 

We estimated two separate sets of LSS models per experimental phase: 385 

one set of GLMs for CS, and a distinct set of GLMs for contexts. The onset of 386 

CS was not included in the context models, and vice-versa. We reasoned that 387 

including both CS and contexts in the same LSS models was not necessary as 388 

CS type and video type were orthogonal to each other, i.e., the paradigm 389 

intrinsically controls for the potential influence of CS on context and vice-versa. 390 

Furthermore, including all CS and context events in one model may risk 391 

overfitting the data (since all events but one serve as variables of non-interest 392 

in each LSS model). However, to distinguish these two events temporally, the 393 

onset of the context was set as the beginning of each video and its offset as 394 

the presentation of the CS. In all models, to avoid the confounding effect of the 395 

US (electric shock) on the CS pattern, only unreinforced trials (i.e., not 396 

followed by a US) were used to conduct statistical analyses of neural pattern 397 

similarity at the group level. The onset of each US was also used as a 398 

regressor of no interest in the LSS models of the phases where US were 399 
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presented (i.e., for fear acquisition and reversal). The six motion parameters 400 

(three translation and three rotation) and the average signal in the white matter 401 

and corticospinal fluid compartments were also added as regressors of non-402 

interest. This LSS beta-series approach was implemented using nilearn 403 

(https://nilearn.github.io/). 404 

Trial-wise pattern similarity of each cue or context was obtained on the 405 

beta-series as the temporal correlation between all cue trials or context trials 406 

with a searchlight approach and region of interest (ROI) approach. Raw 407 

correlation values were, in both cases, Fisher r-to-z transformed before any 408 

further analyses. 409 

 410 

Item stability and generalization of cues 411 

For both cues and context, we analyzed two different types of pattern 412 

similarity, i.e., item stability (within-stimulus similarity) and cue generalization 413 

(between-stimulus similarity). Item stability was defined as the average within-414 

cue or within-context neural pattern similarity, i.e., the average neural pattern 415 

similarity between the different presentations of a given cue (out of eight 416 

possible cues per phase and in the whole experiment) or a given context (out 417 

of four possible contexts per phase, for a total of 16 contexts in the whole 418 

experiment). Thus, item stability represents the similarity of the neural 419 

representation of an item to other representations of this same item (Xue, 420 

2018), or the consistency of neural activity across repetitions (Sommer et al., 421 

2022). 422 

On the other hand, cue generalization was defined as the average 423 

neural pattern similarity between different exemplars of a same CS type (e.g., 424 

the similarity between the two different CS-+ items during reversal learning). 425 

Thus, while item stability provides information about the stability of the neural 426 

representation of one particular item, cue generalization expresses the 427 

formation of a higher-order association between different exemplars of the 428 

same valence category (see Visser et al., 2013 for a similar approach). In the 429 

case of contexts, cue generalization was defined as the average neural pattern 430 
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similarity between the different videos presented in a given experimental 431 

phase.  432 

 433 

RSA of context specificity 434 

Specifically for contexts, we computed the representational specificity of 435 

contexts in each experimental phase, which was defined as the difference of 436 

the average similarity of the different presentations of the same contexts (i.e., 437 

within-context similarity, or context stability) with the average similarity of the 438 

different presentations of different contexts (between-context similarity, or 439 

context generalization), separately for each experimental phase. In other 440 

words, context specificity controls for the stability of a particular stimulus (i.e., 441 

context video) with the generalization between distinct stimuli (all other 442 

contexts shown in an experimental phase), with higher context specificity 443 

entailing more distinct representations of contexts in each experimental phase. 444 

We then compared the context specificity maps between phases, in order to 445 

assess the effect of experimental manipulation (acquisition, reversal, and test 446 

phases) on context specificity. 447 

 448 

Searchlight approach 449 

The different types of similarity analyses described above were implemented 450 

in a searchlight approach. Pattern similarity was estimated at the voxel level 451 

using the searchlight algorithm as implemented in brainIAK 452 

(https://brainiak.org/). A square with a radius of twice the voxel size (i.e., 5-mm 453 

radius) was used with each brain voxel as the center to estimate the average 454 

pattern similarity within the searchlight. Voxels were included only if at least 455 

50% of their surrounding voxels were included in the brain mask. A pattern 456 

similarity formula specific to each type of pattern similarity (e.g., item stability 457 

and cue generalization for CS or contexts) was used. Hypothesis testing was 458 

performed by comparing the obtained Fisher r-to-z-transformed correlation 459 

maps of the conditions of interest (e.g., CS+ cue generalization vs. CS- cue 460 

generalization). Significance corresponding to the contrast between conditions 461 
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of the maps of interest was estimated using non-parametric permutation tests 462 

at the cluster level, with 10,000 permutations used to estimate significant 463 

cluster size. Analyses were restricted within a gray matter mask. 464 

 465 

ROI-based RSA 466 

Additionally, pattern similarity analyses were performed at the ROI level. We 467 

thresholded the statistical maps of the searchlight analyses to only retain 468 

(corrected) significant clusters. We used nilearn’s connected_region function 469 

to define individual ROIs statistical maps, using a minimum ROI size of 470 

1500mm3. These ROI masks in MNI space were used to estimate the average 471 

neural pattern similarity within each ROI, defined as the correlation between 472 

the BOLD response of all trials. Raw correlation values were then Fisher r-to-z 473 

transformed. The effects of experimental phase and type of neural pattern 474 

similarity (within/between) were assessed with LME models using the lme4 475 

package in R. Significance was assessed with the Satterthwaite method for 476 

estimating degrees of freedom using maximum likelihood. All statistical 477 

analyses were corrected for multiple comparisons using False Discovery Rate 478 

(FDR) unless indicated otherwise. 479 

 480 

 481 

 482 

3. Results 483 

Behavioral results 484 

We first examined the trial-wise US expectancy ratings across experimental 485 

phases. A linear mixed effects (LME) model with "CS type" and "experimental 486 

phase" as fixed effects and "participant" as a random effect revealed 487 

significant effects of CS type (F(1816.6, 605.54)= 479.35, p<0.0001) and 488 

experimental phase (F(476.3, 158.78)=125.6, p <0.001) as well as a significant 489 

interaction (F(334.8, 37.2)=29.45, p<0.001), showing that both CS type and 490 

experimental phases affected US expectancy (Figure 2A). Post-hoc paired 491 

Wilcoxon tests (Bonferroni-corrected) showed that ratings to all CS types were 492 
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significantly different from each other across all the experimental phases 493 

(CS++ > CS+- > CS-+ > CS--; all p<0.01) except during fear acquisition in 494 

which CS++ and CS+- cues on the one hand, and CS-+ and CS-- cues on the 495 

other hand were equivalent, as expected at this stage. Post-hoc pairwise 496 

comparisons between experimental phases across all CS types were 497 

significant as well (reversal > acquisition > testnew > testold; all p<0.0001), and 498 

fear reversal and acquisition were the experimental phases with the highest 499 

US expectancy. The CS type with the highest US expectancy was, as 500 

expected, CS++.  501 

To examine the interaction between US expectancy and CS type, we 502 

conducted post-hoc Wilcoxon tests (Bonferroni-corrected), which revealed 503 

different patterns of CS differences between experimental phases 504 

(Supplementary Table 1). 505 

 506 

Activation of fear network by cues signaling current and prior 507 

threats 508 

Next, we assessed activity differences between CS types during each 509 

experimental phase (Figure 2B). During acquisition, the CS+ > CS- contrast 510 

showed significantly increased BOLD activity in several clusters across the 511 

fear network, such as the dACC, superior frontal gyrus, caudate nucleus, and 512 

middle temporal gyrus (Figure 2Bi, in line with previous work (e.g., Fullana et 513 

al., 2016). The opposite contrast CS- > CS+ showed no significant clusters. 514 

During reversal, a contrast of current valence, i.e., (CS++ and CS-+) > 515 

(CS+- and CS--) showed activation patterns similar to those during acquisition, 516 

spanning across the fear network (Figure 2Bii). We then contrasted currently 517 

threatening and safe cues depending on their previous valence, i.e., (CS++ > 518 

CS+-) > (CS-+ > CS--), which also revealed activation in the fear learning 519 

network, although to a lesser extent (Figure 2Biii). This result may reflect the 520 

impact of the lingering Pavlovian trace (remaining from acquisition) and/or the 521 

time required to learn contingency changes during reversal. 522 
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During the two test phases, none of the contrasts between CS types 523 

(CS++ > CS--, CS-+ > CS--, CS+- > CS--) revealed any significant activity 524 

differences. Thus, BOLD responses were similar for all CS types in the 525 

absence of a US, even though differences in US expectancy ratings were 526 

observed at the behavioral level. This further underlines the necessity for an 527 

analysis of representational patterns rather than mere univariate activity 528 

differences. 529 

 530 

Generalized representations of threat cues during acquisition and 531 

reversal 532 

We thus focused our analyses on the representational geometry of cues 533 

across experimental phases. We examined the effect of cue type on two 534 

distinct representational properties, cue generalization (between-cue similarity) 535 

and item stability (within-cue similarity), using a whole-brain searchlight 536 

approach (Figure 3A). 537 

During fear acquisition, we again combined CS++ and CS+- cues (both 538 

followed by a US in 50% of trials) into a common CS+ category, and CS-- and 539 

CS-+ cues (never followed by a US) into a common CS- category. We found 540 

that item stability did not differ between CS+ and CS- cues. Importantly, 541 

however, cue generalization was significantly higher for CS+ compared to CS- 542 

cues in several clusters across the fear network, with a pattern reminiscent of 543 

the results during the corresponding univariate analyses. Thus, the dACC, 544 

superior frontal gyrus, caudate nucleus, and insula were among the regions 545 

showing higher cue generalization of CS+ compared to CS- cues (Figure 3C; 546 

Supplementary Table 2). This suggests the formation of a higher-order 547 

association (i.e., a category-level stability) between threatening cues and less 548 

so between safe cues during fear acquisition. The opposite contrast (CS- > 549 

CS+) did not reveal any significant effects. 550 

 551 

Distinct functional roles, spatial distributions, and subsequent 552 

persistence of item stability and cue generalization during reversal 553 
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Next, we compared item stability and cue generalization between the four CS 554 

types during fear reversal (Figure 3B-D). We first compared CS++ and CS-- 555 

cues, corresponding to the CS+ vs. CS- contrast during fear acquisition 556 

(Figure 3B). Again, we observed higher cue generalization for CS++ compared 557 

to CS-- cues in the dACC, but not in any of the other regions where cue 558 

generalization effects were observed during acquisition. Comparing the cue 559 

generalization of all CS cues that are threatening in reversal (CS++ & CS-+) to 560 

the ones that are not (CS+- & CS--) revealed similar results to fear acquisition, 561 

with increased cue generalization across fear learning network regions 562 

including the dACC, superior frontal gyrus (SFG), medial temporal gyrus, and 563 

inferior frontal gyrus (IFG) (Figure 3C). Item stability, in line with results from 564 

fear acquisition, did not differ between currently threatening and non-565 

threatening cues. Moreover, we found no significant clusters when comparing 566 

item stability between CS++ vs. CS-- cues. 567 

We then investigated representational effects of contingency changes 568 

and compared cues that changed their contingency between acquisition and 569 

reversal (CS+- and CS-+) to cues with consistent contingencies (CS-- and 570 

CS++), resulting in the ‘change vs. no-change’ contrast, i.e., (CS+- & CS-+) > 571 

(CS++ & CS--). Interestingly, item stability was significantly higher for changing 572 

than consistent cues in the precuneus and IFG, i.e., in regions that overlapped 573 

with those showing higher cue generalization for threatening cues 574 

(Supplementary Table 3; Figure 3Biii). Conversely, this contrast did not reveal 575 

any differences in cue generalization. 576 

 We next investigated item stability and cue generalization during testnew 577 

and testold, i.e., when USs are absent for all CS types. In order to understand 578 

the impact of prior contingencies – i.e., of lingering Pavlovian traces – on 579 

testnew and testold, we examined the contrast between CS++, CS-+, and CS+- 580 

with CS-- (safe baseline), as well as the contrast between CS-+ and CS+- with 581 

CS++ (unsafe baseline) in these two phases.  582 

Cue generalization did not differ between CS types during either testnew 583 

or testold. However, item stability was higher for CS+- vs. CS++ cues in a 584 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 19, 2024. ; https://doi.org/10.1101/2024.12.16.628638doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.16.628638
http://creativecommons.org/licenses/by/4.0/


middle temporal cluster during testnew (Figure 3E), and for CS++ compared to 585 

CS-- cues in an inferior temporal cluster during testold (Figure 3F; 586 

Supplementary Table 4).  587 

To summarize, cue generalization and item stability showed an 588 

interesting dissociation during reversal, with higher cue generalization for 589 

threatening vs. non-threatening cues, and higher item stability for changing vs. 590 

consistent cues. This suggests that these two representational properties 591 

could capture distinct aspects of contingency learning; the threatening (vs. 592 

safe) nature of cues increased cue generalization, while a changing (vs. 593 

consistent) nature of contingencies enhanced item stability. We also found that 594 

item stability but not cue generalization effects persisted in the absence of a 595 

US. 596 

 597 

Memory traces from previous learning phases compete for 598 

reinstatement during test 599 

Fear extinction is commonly described as an inhibitory process, in which a 600 

new safety memory trace is created and competes with the previous threat 601 

memory trace that is concurrently inhibited (Lebois et al., 2019; Santini, 2008; 602 

Szeska et al., 2020). In our paradigm, the memory traces formed during 603 

acquisition and reversal might compete for reinstatement in particular during 604 

the testold phase, because both fear and reversal memories may reoccur 605 

during this phase due to context overlap. We compared the magnitude of 606 

reinstatement effects between acquisition and reversal during testold, by using 607 

an LME with experimental phase, CS type, and their interaction as predictors, 608 

and reinstatement as the predicted variable. Reinstatement was estimated by 609 

comparing either the similarities of identical items across phases (item 610 

reinstatement) or the similarities of different items from one cue type across 611 

phases (generalized reinstatement). We extracted these reinstatement values 612 

from significant clusters observed in our previous searchlight analyses (Figure 613 

4A), and correlated them across participants (see Graner et al., 2020 for a 614 

similar approach).  615 
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 We observed a significant effect of experimental phases on item 616 

reinstatement in IFG (F(2,253)=5.50, p<0.01) (Figure 4Bi). Post-hoc Wilcoxon 617 

t-tests showed that reversal-testold item reinstatement was significantly higher 618 

than acquisition-testold item reinstatement (t(253)=-3.01, p<0.01) and testnew-619 

testold item reinstatement (t(253)=-2.7, p<0.05). In addition, we observed a 620 

significant effect of experimental phases on generalized reinstatement in 621 

dmPFC (F(2,259)=4.01, p<0.05) (Figure 4Bii), where acquisition-testold 622 

generalized reinstatement was higher than testnew-testold generalized 623 

reinstatement (t(259)=2.96, p<0.05). In summary, during testold, we observed 624 

prominent reinstatement of item-specific reversal memory traces in IFG and of 625 

generalized acquisition memory traces in dmPFC, suggesting that memories 626 

from these two phases tend to come back in different representational formats 627 

and in dissociable brain regions. 628 

 629 

Context specificity increases during reversal in prefrontal cortex 630 

and predicts the reoccurrence of fear memory traces 631 

We followed our analyses of cue generalization, item stability, and 632 

reinstatement with an analysis of the neural representation of contexts across 633 

experimental phases. Given that memories built during extinction learning tend 634 

to be more context-specific than those acquired during initial fear learning 635 

(Maren et al., 2013), we established a measure of context specificity, namely 636 

the difference between neural representations of same vs. different contexts in 637 

each phase. We also compared this measure across experimental phases and 638 

related it to the representational geometries of cues (Figure 5A). 639 

As hypothesized, we found that context specificity during reversal was 640 

significantly higher than it was during acquisition, an effect that occurred in a 641 

cluster including both dorsomedial PFC and lateral PFC (i.e., superior frontal 642 

gyrus), areas known to be involved in contextual processing (Maren et al., 643 

2013; Figure 5B, Supplementary Table 5). Context specificity did not differ 644 

between the other experimental phases. 645 
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Previous research has suggested that higher context specificity during 646 

extinction learning predicts a more pronounced reoccurrence of fear memories 647 

(LaBar and Phelps, 2005; Milad et al., 2005; Vansteenwegen et al., 2005; 648 

Neumann, 2006; Navarro-Sanchez et al., 2024). To investigate this 649 

hypothesis, we compared the neural representations of cues between 650 

experimental phases and correlated the magnitude of reinstatement effects 651 

with the increase in context specificity from acquisition to reversal (across 652 

participants). We extracted subject-wise measures of context specificity from 653 

the PFC cluster in Figure 4B and compared them to both item reinstatement 654 

and generalized reinstatement. We extracted these reinstatement values from 655 

significant clusters resulting from our previous searchlight analyses (Figure 4A, 656 

Figure 5C).  657 

We focused our analyses on cues that changed their contingencies (i.e., 658 

CS-+ and CS+-), which were expected to reveal differential reinstatement of 659 

acquisition vs. reversal memory traces. We used LME models with “context 660 

specificity” and “cue type” as predictors and “item reinstatement” or 661 

“generalized reinstatement” as the dependent variable (Figure 5C). Correction 662 

for multiple comparisons was done (FDR) within each item 663 

reinstatement/generalized reinstatement pair of each ROI. 664 

 We tested whether increased context specificity during reversal 665 

predicted the reinstatement of acquisition memory traces during testold (the test 666 

phase with the acquisition/reversal contexts). We found that an interaction 667 

between context specificity and cue type predicted generalized reinstatement 668 

of acquisition memory traces in both ACC/SFG (t(22)=6.25, p<0.05) and 669 

precuneus (t(22)=4.89, p<0.01) (Figure 5Di). In the precuneus, higher context 670 

specificity during reversal predicted more generalized reinstatement of the 671 

initially non-threatening cues (CS-+), i.e., a cue type that is safe during both 672 

acquisition and test, as compared to initially threatening cues (CS-+). 673 

Reversely, in the ACC/SFG, higher context specificity during reversal 674 

predicted more generalized reinstatement of the initially threatening cues 675 

(CS+-) than of the initially safe cues (CS-+). 676 
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In addition, higher context specificity during reversal predicted higher 677 

item reinstatement of reversal memory traces for CS-+ than CS+- cues in the 678 

dmPFC (t(22)=5.56, p<0.05). Thus, similar to reinstatement in ACC/SFG, 679 

higher context specificity again favored reinstatement of memory traces of 680 

threatening over safe cues, even though these memory traces were now from 681 

the reversal rather than the acquisition phase (Figure 5Dii). 682 

As a control, we also analyzed reinstatement during the testnew phase. 683 

We tested whether increased context specificity during reversal predicted the 684 

reinstatement of acquisition memory traces during this phase with new 685 

contexts. We found that an interaction between context specificity and CS type 686 

predicted the reinstatement of acquisition memory traces in middle temporal 687 

gyrus (t(22)=2.51, p<0.05) (Figure 5Diii). Specifically, higher reversal context 688 

specificity predicted more item reinstatement of CS-+ cues, i.e., cues that were 689 

safe during acquisition, than of the initially threatening CS+- cues. 690 

Together, these results indicate more specific context representations 691 

during reversal than acquisition (Figure 5B) and show that acquisition memory 692 

traces are predominantly reinstatement in a generalized format, while reversal 693 

memory traces are reinstated at the level of individual items (Figure 4B). 694 

Perhaps most interestingly, they suggest a possible mechanism for the 695 

previously observed impact of extinction contexts on fear renewal, because 696 

higher levels of context specificity during reversal favored the reinstatement of 697 

threat memory traces in areas of the fear network (ACC and dmPFC; Figure 698 

5Di left and 5Dii). These effects were not observed in the precuneus (Figure 699 

5Di right) and for reinstatement during new contexts (Figure 5Diii). 700 

 701 

4. Discussion 702 

The present study investigated the dynamic changes in neural representations 703 

of CS cues and contexts during acquisition, reversal, test in new contexts 704 

(testnew), and test in previous acquisition/reversal contexts (testold). Our main 705 

findings demonstrate distinct representational properties of CS cues and 706 

contexts during these different phases, suggesting that representational 707 
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geometries reflect the fate of memory traces. We found that (1) cue 708 

generalization and item stability play complementary roles during initial fear 709 

learning and reversal, by being associated with threatening-vs-safe cues and 710 

changing-vs-consistent cues, respectively; (2) during testnew and testold, 711 

differences of cue generalization between CS types disappear, while some 712 

differences of item stability remain; (3) context representations become more 713 

specific following contingency changes during reversal learning; and (4) the 714 

context specificity during reversal predicts the reinstatement of fear memories 715 

during subsequent test, providing a mechanistic basis for clinically relevant 716 

phenomena such as renewal. These results offer new insights into the regional 717 

distributions, representational geometries, and functional relevance of cues 718 

and contexts across distinct stages of fear learning, opening new avenues of 719 

understanding fear-guided behavior.                                         720 

 721 

Complementary representational properties during initial fear learning 722 

Our results demonstrate how different representational properties of CS cues 723 

are associated with distinct aspects of fear learning, i.e., cue generalization 724 

with a threatening vs. safe nature of the CS, and item stability with a changing 725 

vs. consistent nature of the CS. Consistent with previous studies (Visser et al., 726 

2011; 2013), we found that cue generalization was greater for CS+ than for 727 

CS- cues during fear acquisition in regions of the fear network (e.g., ACC) and 728 

the salience network. This suggests that fear acquisition leads to the formation 729 

of a higher-order association between different reinforced cues, but less so 730 

between unreinforced ones. This category-level learning could allow for 731 

efficient threat detection and generalization, an adaptive behavior in potentially 732 

dangerous environments. Moreover, previous studies showed that the role of 733 

cue generalization in the coding of threat extends beyond fear conditioning, as 734 

shown by Dunsmoor et al. (2014) who found enhanced memory consolidation 735 

of items sharing conceptual similarity with threat-associated stimuli. 736 

In stark contrast, item stability of CS cues, i.e., their within-stimulus 737 

similarity across repetitions, did not differ between CS+ and CS- cues during 738 
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fear acquisition. This indicates that while acquisition induces a category-level 739 

representation for reinforced cues, it does not differentially modify the item-740 

level representations of CS+ as compared to CS- cues. By contrast, item 741 

stability was particularly sensitive to changes in CS valence between 742 

experimental phases, suggesting that it plays a crucial role in tracking and 743 

updating the specific threat associations of individual stimuli. Indeed, in fear 744 

reversal, while cue generalization remained greater for reinforced compared to 745 

unreinforced cues (CS--), mirroring the pattern observed during acquisition, 746 

item stability specifically increased for cues that changed valence between 747 

acquisition and reversal (CS-+ and CS+-). This finding suggests that when the 748 

contingencies change, the participants might focus more on the individual 749 

properties of the cues to interpret the new contingencies, leading them to fine-750 

tune their representations. Indeed, item stability has been linked to successful 751 

memory encoding and retrieval by several studies (Xue et al., 2010; LaRocque 752 

et al., 2013; Zheng et al., 2018). Moreover, neural correlates of item stability 753 

have been reported in regions of the episodic memory network, such as the 754 

IFG and the precuneus (Xue et al., 2010), where we found a significant effect 755 

of item stability during reversal. Therefore, item stability might hence be more 756 

akin to an episodic-like type of learning, while cue generalization might be 757 

more reflective of category-level learning (Visser et al., 2013). 758 

Previous findings by Visser et al. (2011, 2013) demonstrate distinct 759 

learning curves for item stability between CS+ and CS- cues from trial to trial. 760 

This discrepancy could be caused by methodological differences, as our study 761 

focused on session-wise differences of item stability for each cue type and not 762 

on trial-by-trial differences. In line with our conclusions, however, Visser et al. 763 

(2013) found that item stability was increased for subsequently remembered 764 

cues, while cue generalization was associated with the later behavioral 765 

expression of fear memory. Overall, the increased item stability during reversal 766 

of the items that change contingency could reflect a process of stabilizing the 767 

new valence at the item level, as the change of contingency may lead to the 768 

temporary representation of individual items as ‘categories’ themselves, 769 
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without being subsumed yet into the generalized representations 770 

encompassing multiple different items sharing the same valence. This dual 771 

representational signature may allow for both efficient threat detection (via 772 

category representations) and flexible updating of individual stimulus 773 

associations (via item-specific representations).  774 

 775 

Dissolution of cue generalization and item stability in the absence of US 776 

During the test phases, we did not observe any differences in cue 777 

generalization between cue types. Further analyses comparing cue 778 

generalization values between learning phases revealed a decrease in cue 779 

generalization during the test phases compared to acquisition and reversal, 780 

mostly affecting previously threatening cues (Supplementary Figure S1). We 781 

also observed a decrease in item stability from acquisition/reversal to the test 782 

phases, which affected cues that changed valence (CS-+, CS+-) more than 783 

cues with consistent valence (CS++, CS--) (Supplementary Figure S1). 784 

However, some differences in item stability remained during testnew (higher for 785 

CS+- vs CS++ in the middle temporal gyrus) and testold (higher for CS++ vs 786 

CS-- in the inferior temporal cortex) (Figure 3C-D). 787 

These findings suggest that the disappearance of threat during the test 788 

phases may involve two concurrent processes: (1) An unlearning of 789 

generalized threat representations, evidenced by the global decrease in cue 790 

generalization; and (2) a partial unlearning of item-level representations, 791 

particularly for cues with changing contingencies, reflected in diminished item 792 

stability. Interestingly, these effects occurred during the test phases rather 793 

than during reversal, suggesting that they are driven by the absence of the US 794 

rather than by the contingency change. During reversal, the continued 795 

presence of the US, albeit with a different contingency, may still benefit from 796 

generalized representations at the item and category levels. Contrastingly, the 797 

complete absence of the US during the test phases may promote a 798 

differentiation of CS representations, as the need for generalization 799 

diminishes. This finding highlights the importance of considering the specific 800 
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reinforcement history of cues for understanding the dynamics of fear 801 

representations. 802 

 803 

Reinstatement of item representations during test is weaker for fear extinction 804 

Our results showed a differentiation of fear memories during the test phases, 805 

both at the item and category level. Interestingly, we found that the 806 

reinstatement of representations from the first test phase during the 807 

immediately following second test phase was weaker compared to the 808 

reinstatement of acquisition and reversal memory traces that had been formed 809 

on a different day (Figure 4E). This may be explained by the greater 810 

differentiation of cue representations during testnew; the more differentiated the 811 

representations, the less likely they are to be reinstated subsequently. The 812 

weaker reinstatement of memories from a phase without any US, compared to 813 

memories from acquisition and reversal phases with US, may contribute to the 814 

challenges of preventing relapse in anxiety disorders (Vervliet et al., 2013). If 815 

extinction learning results in less stable and less generalizable safety 816 

representations, individuals may remain vulnerable to the return of fear once 817 

they return to previous contexts (Boschen et al., 2009). 818 

 819 

Increased specificity of context representations following contingency changes 820 

Our analysis of context representations revealed an increased specificity of 821 

context coding during reversal compared to initial acquisition. This suggests 822 

that the brain may allocate more resources to representing contextual details 823 

when contingencies are changing, by potentially facilitating the adaptive 824 

updating of contingencies against a more stable contextual backdrop. 825 

The dorsomedial PFC, including the superior frontal gyrus and ACC, 826 

have emerged from our analyses as key regions exhibiting higher context 827 

specificity in reversal learning. Given their roles in attentional control 828 

(Dosenbach et al., 2007) and conflict monitoring (Stevens et al., 2011), the 829 

dmPFC's involvement may reflect the increased attentional and control 830 

demands induced by changing contingencies. Computationally, the more 831 
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precise contextual coding in these regions during reversal could serve to 832 

disambiguate cues of changing contingencies, supporting the formation of new 833 

context-dependent associations (Xu & Südhof, 2013). Our findings extend 834 

prior work on the importance of hippocampus and mPFC in representing 835 

context during fear learning and extinction (Maren et al., 2013), as these 836 

regions could dynamically adjust their representational specificity in response 837 

to a change in environmental demands. 838 

 839 

Context specificity is associated with reinstatement of fear memory traces 840 

The amount of reinstatement during testold was related to the increase in 841 

context specificity from acquisition to reversal. We quantified this increase in 842 

specificity in the dmPFC cluster identified in the previous analysis and 843 

correlated it with two measures of reinstatement: (1) item reinstatement, 844 

reflecting the similarity of individual cue representations between phases; and 845 

(2) generalized reinstatement, capturing the similarity of cue representations 846 

among their CS category. 847 

For regions involved in threat processing, such as the ACC/SFG, higher 848 

context specificity predicted stronger generalized reinstatement of 849 

representations of previously threatening cues (CS+-) from acquisition to the 850 

test phase. This suggests that for these cues, the more distinct the contextual 851 

coding during reversal, the more strongly the original fear memory trace 852 

resurfaced, likely reflecting a return of fear (Figure 5D). Contrastingly, for 853 

areas implicated in cue-specific processing that could reflect more episodic-854 

like learning, such as the precuneus (Cavanna & Trimble, 2006), context 855 

specificity was associated with enhanced generalized reinstatement for cues 856 

with consistent meanings across phases (e.g., CS+- cues from reversal to 857 

test). Regarding item reinstatement, the dmPFC behaved similarly to the 858 

ACC/SFG, with stronger item reinstatement of previously threatening cues 859 

(CS-+ from reversal to test), while the MTG showed a pattern similar to the 860 

precuneus, with stronger item reinstatement for cues of consistent meanings 861 

across phases. 862 
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These findings highlight the region-, phase- and cue-specific effects of 863 

contexts on the reinstatement of cue representations. In threat-responsive 864 

regions, context specificity may promote the resurgence of generalized threat 865 

representations, in line with notions of renewal and spontaneous recovery of 866 

fear (Maren et al., 2013). Conversely, in episodic learning regions, contextual 867 

coding may support the reactivation of representations when meanings are 868 

maintained, reflecting memory stability. Together, these results suggest a 869 

critical role of context representations in modulating the balance between 870 

generalization and specificity of fear memories over time.  871 

 872 

Limitations and future directions 873 

While our study provides novel insights into the changes of neural 874 

representations across the different stages of fear learning, reversal, and test, 875 

several limitations should be noted. First, our sample size was relatively small, 876 

and future studies with larger samples will be needed to replicate and extend 877 

our findings. Second, while we examined the spatial patterns of neural activity 878 

using RSA, we did not assess potential changes in the temporal dynamics of 879 

these patterns. Several studies have highlighted the importance of considering 880 

temporal information in understanding the neural mechanisms of fear learning 881 

(Bach et al., 2011; Visser et al., 2013; Sperl et al., 2021). Integrating spatial 882 

and temporal pattern analysis in future studies could provide a more 883 

comprehensive overview of how fear representations evolve over time. 884 

Moreover, further examining the role of context manipulation, by using more 885 

classical approaches where only one context is presented per phase, could 886 

extend and generalize our current findings. Finally, applying our approach to 887 

clinical populations could yield important insights into the neural mechanisms 888 

underlying the overgeneralization of fear, and the impaired contextual 889 

regulation of fear responses in psychiatric disorders. 890 

 891 

Conclusion 892 
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Our study reveals the changes in neural representations of conditioned stimuli 893 

and contexts across fear learning phases. Cue generalization and item stability 894 

play complementary roles in fear acquisition, reversal, and test, by capturing 895 

the formation of threat-related categories and the updating of the contingency 896 

of individual stimulus representations, respectively. Phases devoid of US cues 897 

lead to a differentiation (or dissolution) of both category- and item-level 898 

representations. Context specificity in the prefrontal cortex modulates the 899 

persistence of fear memories, with region-specific reinstatement effects. These 900 

findings provide insights into the representational dynamics underlying fear 901 

learning and extinction, demonstrating the interplay between cue- and context-902 

based representations in shaping the formation, updating, and reinstatement 903 

of fear memories. Understanding these mechanisms might help optimize 904 

interventions targeting pathological fear in anxiety disorders. Future research 905 

should extend these findings to clinical populations and investigate the 906 

identified representational properties as biomarkers for assessing the 907 

effectiveness of extinction-based therapies. 908 
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 939 

 940 

Figure 1. Overview of the paradigm and analysis approach. A: Example 941 

structure of a trial. Each trial comprises the presentation of a context video, 942 

cue, and US expectancy rating. Electric shocks (US) are administered in 943 

reinforced trials during acquisition (following CS++ and CS+- cues) and 944 

reversal (following CS++ and CS-+ cues), with reinforcement rates of 50%. B: 945 

Paradigm structure with four different experimental phases (rows) and four 946 

different cue types (columns). Each cue type consists of two possible items. C: 947 
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CS items (left) and context videos (right). Each color indicates a set of four 948 

thematically-related context videos. Different sets are used across phases 949 

(see Table in B). D: Representational Similarity Matrices (RSMs) for each 950 

experimental phase, shown here from the dorsal ACC for illustrative purposes. 951 

Lightning images represent reinforced cue types in the different learning 952 

phases. Representations of threatening cues are more similar to each other 953 

(warmer colors), reflecting cue generalization. E: Top: Cue generalization 954 

mask for the RSA matrices estimated within each searchlight. The mask is 955 

superimposed on the RSMs (shown in C) to compute the average similarity 956 

between the different cues of each CS type (different colors). Average cue 957 

generalization values are then compared between CS types. Bottom: Item 958 

stability mask estimated within each searchlight. The mask is superimposed 959 

on the RSMs to compute the average similarity across trials of each cue, 960 

separately for each CS type (different colors). Average item stability values are 961 

then compared between CS types. 962 
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 979 

Figure 2. A: US expectancy ratings and univariate activity difference between 980 

cue types across experimental phases. Dotted lines separate the four 981 

experimental phases. Participants quickly learned the contingencies of each cue type 982 

and their changes across the experimental phases. B: Univariate activation results. 983 

Significant second-level results are shown for different contrasts in the different 984 

experimental phases. Significance was assessed at the cluster level with 10k 985 

permutations (puncorr<0.001). 986 
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 997 

Figure 3. Enhanced cue generalization and item stability of threat cues. 998 

A: Cue representations during acquisition showing higher cue generalization of 999 

CS+ than CS- cues. No differences of item stability were found. B: Cue 1000 

representations during reversal. Bi: Higher cue generalization of CS++ than 1001 

CS-- cues. Bii: Higher cue generalization of currently threatening than non-1002 

threatening cues i.e., (CS-+ & CS++) > (CS+- & CS--). Biii:  Higher item 1003 

stability of cues with changing valence than cues with consistent valence, i.e., 1004 
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(CS-+ & CS+-) > (CS++ & CS--). C: Cue representations during testnew 1005 

showing higher item stability of previously safe cues vs. previously always 1006 

threatening cues (CS+-) > (CS++). D: Cue representations during testold 1007 

showing higher item stability of ‘previously always threatening’ vs. ‘previously 1008 

never threatening’ cues (CS++) > (CS--). All plots depict t-values from 1009 

searchlight analyses within family-wise error-corrected clusters (uncorrected 1010 

p<0.001, corrected p<0.05) with 10k permutations. 1011 
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 1036 

Figure 4. Different reinstatement patterns are observed for the previous 1037 

experimental phases during testold. A: ROIs derived from the previous 1038 

searchlight analyses (see Figure 3), by extracting the significant clusters from 1039 

the previous statistical analyses. ROIs are color-coded depending on the 1040 

experimental phase they are derived from: red for acquisition, orange for 1041 

reversal, green for testnew, blue for testold. When several ROIs overlapped, 1042 

only the ROI with the bigger voxel size was included in the analyses. MTG: 1043 

Middle Temporal Gyrus. InfTemp: Inferior Temporal Gyrus. IFG: Inferior 1044 

Frontal Gyrus. dmPFC: dorsomedial Prefrontal Cortex. ACC: Anterior cingulate 1045 
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cortex. SFG: Superior Frontal Gyrus. B: Reinstatement during testold differed 1046 

between experimental phases, such that: (Bi) in IFG, item reinstatement was 1047 

higher for memory traces from reversal compared to those from acquisition 1048 

and testnew; and (Bii) in dmPFC, generalized reinstatement was higher for 1049 

memory traces from acquisition compared to those from testnew. 1050 
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 1076 

Figure 5. Context specificity during reversal and its role for 1077 

reinstatement of fear memory traces. A: Calculation of context specificity as 1078 

the difference of within-context similarity and between-context similarity. B: 1079 

Difference in context specificity between acquisition and reversal. Positive 1080 

values (in red) indicate higher context specificity in reversal. C: Calculation of 1081 

item reinstatement and generalized reinstatement (similarities of item 1082 

representations across different phases; left) and context specificity (difference 1083 

between acquisition and reversal; right). An LME model was used to predict 1084 
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these reinstatement measures by the interaction of context specificity and CS 1085 

types. D: Higher context specificity during reversal predicted reinstatement 1086 

during testold, as a function of CS type: (Di) Higher reversal context specificity 1087 

predicted more pronounced generalized reinstatement of CS+- vs. CS-+ 1088 

acquisition memory traces in ACC/SFG (left), and reversely, more pronounced 1089 

generalized reinstatement of CS-+ vs. CS+- acquisition memory traces in 1090 

precuneus (right). CS+-, which is threatening in acquisition, is shown in red, 1091 

and CS-+, which is not threatening in acquisition, is shown in green. (Dii) 1092 

Higher reversal context specificity predicted more pronounced item 1093 

reinstatement of CS-+ than CS+- reversal memory traces in dmPFC. CS-+, 1094 

which is threatening in acquisition, is shown in red, and CS+-, which is not 1095 

threatening in acquisition, is shown in green.  (Diii) Higher reversal context 1096 

specificity also predicted more pronounced item reinstatement of CS-+ (safe 1097 

during acquisition; in green) than CS+- (threatening during acquisition; in red) 1098 

memory traces from reversal in MTG during testnew. 1099 
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