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ABSTRACT. Purpose: The hippocampus is organized in subfields (HSF) involved in learning and
memory processes and widely implicated in pathologies at different ages of life, from
neonatal hypoxia to temporal lobe epilepsy or Alzheimer’s disease. Getting a highly
accurate and robust delineation of sub-millimetric regions such as HSF to investi-
gate anatomo-functional hypotheses is a challenge. One of the main difficulties
encountered by those methodologies is related to the small size and anatomical
variability of HSF, resulting in the scarcity of manual data labeling. Recently intro-
duced, capsule networks solve analogous problems in medical imaging, providing
deep learning architectures with rotational equivariance. Nonetheless, capsule net-
works are still two-dimensional and unassessed for the segmentation of HSF.

Approach: We released a public 3D Capsule Network (3D-AGSCaps, https://github
.com/clementpoiret/3D-AGSCaps) and compared it to equivalent architectures
using classical convolutions on the automatic segmentation of HSF on small and
atypical datasets (incomplete hippocampal inversion, IHI). We tested 3D-AGSCaps
on three datasets with manually labeled hippocampi.

Results: Our main results were: (1) 3D-AGSCaps produced segmentations with
a better Dice Coefficient compared to CNNs on rotated hippocampi (p ¼ 0.004,
cohen’s d ¼ 0.179); (2) on typical subjects, 3D-AGSCaps produced segmentations
with a Dice coefficient similar to CNNs while having 15 times fewer parameters
(2.285M versus 35.069M). This may greatly facilitate the study of atypical subjects,
including healthy and pathological cases like those presenting an IHI.

Conclusion: We expect our newly introduced 3D-AGSCaps to allow a more accu-
rate and fully automated segmentation on atypical populations, small datasets, as
well as on and large cohorts where manual segmentations are nearly intractable.
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1 Introduction
The hippocampus, located in the medial temporal lobe, plays a crucial role in learning and
memory processes.1 The hippocampus is also implicated in diverse neuropathologies with high
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prevalence across the lifespan, from neonatal hypoxia to Alzheimer’s disease or medial-temporal
lobe epilepsy.2 Recent research has focused on the distinct roles of hippocampal subfields (HSF)
in memory and disease progression: the dentate gyrus (DG), four parts of the cornu ammonis
(CA4 to CA1), and the subiculum (Sub).

1.1 Segmenting the Hippocampus, Stakes, and Methods
Such research involves an accurate delineation (or segmentation) of the HSF, which consists of
assigning a class to every voxel of a given image. In the context of MRI segmentation, bilateral
regions of interest (ROI) like the HSF are assigned the same labels, to divide an image into a set
of semantically meaningful, homogeneous, and non-overlapping regions of similar attributes,
such as intensity, depth, color, or texture.3 This delineation process enables the study of structural
patterns which may in fine lead to a better comprehension, diagnosis and prognosis of such
diseases, as segmentation allows one to easily derive the geometry, shape, and size of a given
ROI. To date, the segmentation of the hippocampus can capture anatomical variability, such as
the incomplete hippocampal inversion (IHI),4 a developmental abnormality occurring in conse-
quent subsets of the healthy or pathological population, where the hippocampal body and the
collateral sulcus can be rotated up to 90 deg.5 However, this methodology remains so time-
consuming that it cannot be considered as routine clinical practice. While distinct techniques
of various complexities have been developed to segment HSF on MRIs,6–8 the field suffers from
labeled data scarcity as manual segmentation is a time-consuming and error-prone process par-
tially caused by inconsistent guidelines. Because manual segmentation is the only way to gather
labeled datasets to train neural networks, the aforementioned difficulties greatly limit the size of
available datasets, thus reducing the probability of learning in specific cases where IHI is found,
such as in temporal lobe epilepsy.

Nowadays, segmentation tasks are now almost exclusively handled through specific and
supervised convolutional neural networks (CNN), an architecture called UNet,9 leveraging the
properties of an auto-encoder architecture to quickly achieve a segmentation with an expert-level
accuracy and small sample size. Nevertheless, those models suffer from several pitfalls. It has
been shown that the performances of such computer-vision models are prone to image corrup-
tions, such as noise or rotations.10–12 Albeit recent works validated deep learning as a great can-
didate for automated segmentation of HSF,13,14 IHI, which are unassessed in recent automated
segmentation methods, may cause troubles to most conventional CNNs. With a transformation g,
an image x, and a model f, equivariance is defined as gðfðxÞÞ ¼ fðgðxÞÞ. Similarly, invariance is
achieved if and only if fðgðxÞÞ ¼ fðxÞ. CNNs are efficient in modeling structural patterns in a
given image, especially due to their built-in translation equivariance: a translation of a specific
pattern in the input image, shifts the output of the convolutional layer. As previously found,
transformations such as rotations can impair CNNs performances.15 On the one hand, a standard
approach to approximate rotational equivariance would be to use data augmentation by providing
multiple rotated versions of the training set. However, it involves learning redundant parameters
corresponding to similar patterns at varying angles.16 In addition, data augmentation may
increase overfitting risks,17,18 meaning the improvement on standard CNNs would only be mar-
ginal on small training sets and may sometimes lead to a drop in accuracy on unperturbed
images.10 Partly to solve this issue, recent works introduced Capsule Networks (CapsNets), a
novel kind of neural network designed to benefit from natural or augmented variability more
efficiently.19,20

1.2 Capsule Networks
CapsNets are replacing standard convolutions with capsules (Fig. 1). A capsule aims to replace
scalar activation values with vectors (of which the number of dimensions constituting its space is
sometimes referred to as the number of atoms). The L2-Norm of a given vector is equivalent to
the activation of a standard convolution, but now a network can encode information into the
orientation of the vector. This intriguing characteristic promotes the emergence of a key property:
the theoretical ability to learn equivariances to features (sometimes called “instantiation param-
eters”), such as rotations, local deformations,20 or even to more subtle features such as sphericity,
lobulation, or textures.21 Intuitively, whereas convolutions learn multiple kernels to detect differ-
ent versions of the same object (e.g., a rotated hippocampus), capsules embed those different
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versions under the same weights through vectors’ orientations, leading to less redundancy in the
network, and greater expressive power for the same number of parameters. Moreover, the usual
feedforward pass is altered by using a routing-by-agreement between capsule layers.20 This rout-
ing-by-agreement recurrently weights the feedforward pass by selectively passing information
from capsules in the layer l to the layer lþ 1. Each capsule in l will vote for the potential output
of capsules in lþ 1. Then, activations between all capsules in l and a specific capsule in lþ 1 are
weighted by their L2-Norm to the centroid of the predictions: similar predictions are likely to be
sent to a single parent capsule. In two-dimensional (2D), CapsNets have shown improved robust-
ness against physical alterations, such as rotations,22 placing themselves as possible candidates to
explore for MRI processing. To date, CapsNets are yet to be publicly implemented and bench-
marked on a 3D segmentation task. For example, if a capsule represents a high-level object, such
as a hippocampus, for every patch of a given image the vector’s norm represents the probability
of presence of the object. Then, its direction encodes relevant instantiation parameters. On the
other hand, their activation (L2-norm) stays invariant. This behavior leads to an increased expres-
sion power and a higher sample efficiency.23

CapsNets have already been implemented in the biomedical field with promising results,
where the authors were able to overcome the shortcomings of CNNs on a brain tumor and
lung nodule type classification tasks.24,25 By processing MRIs in a slice-by-slice manner,
they achieved a classification accuracy of 78% against 61.97% for a CNNs of comparable archi-
tecture. To date, CapsNets for image segmentation are poorly investigated. The authors of
the SegCaps model were the first ones to successfully perform segmentation with capsule
layers.21 They made this possible by building a deeper model than the original implementation
using locally constrained routing and transformation matrix sharing to reduce the number of
parameters and memory consumption. To build a UNet-shaped model, they also introduced
transposed capsules. Following this segmentation paradigm, recent works handled coronary
artery segmentation from intravascular optical coherence tomography in a slice-by-slice
manner.26 While they did not reach the accuracy of the best model in the state-of-the-art
(SotA accuracy) on their dataset, they managed to get honorable segmentations with a model
of nearly 5M parameters, while SotA models were between 30M and 40M parameters. This may
suggest that capsules can effectively benefit from learned equivariances in segmentation tasks.
Nevertheless, both implementations act in a 2D space, on binary segmentation tasks. CapsNets
able to perform 3D segmentation tasks are yet to be implemented. If 3D segmentation is not yet
handled by CapsNets, several works experimented with 3D capsules in other tasks. Newer devel-
opments used 3D CapsNet to perform object recognition with a shallow architecture,27 where
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0.0 0.1 0.2 0.0

0.0 0.0 0.0 0.0

0.4 0.9 0.9 0.30 90 90 9 999

After the last layer of a CNN

After the last layer of a
Capsule Network

Input Image

Fig. 1 Capsule Networks versus CNNs. The schematic represents the output of both networks on
a toy example. A CNN will output, for each voxel, the probability of presence of the object, while
a Capsule Network will output a vector, where its norm is the probability of presence, and its
orientation encodes additional properties (here, the rotation of the object).
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they found that 3D CapsNets were more data efficient than analogous CNN architectures.
Additional works found a consistent improvement of 3D capsules over SotA models for 3D
point set classification, especially for noisy observations.28,29 Finally, 3D CapsNets were applied
with success in the biomedical field for lung nodule malignancy prediction with a highly
competitive accuracy.24

Thus, 3D capsules come out as relevant candidates for tasks where the number of obser-
vations is limited, variable or noisy, and where models are operating in resource-constrained
environments. Notwithstanding the fact that 3D CapsNets are an active research area, no
implementation is currently publicly accessible.

1.3 Attention-Gated Networks
The idea behind attention gates (AG) is to allow a CNN to implicitly learn how to suppress or
highlight specific regions in an input image, with minimal computational overhead.30 Initially
developed as an extension to the standard U-Net model, it generates through additive attention a
soft-attention grid, composed of gating coefficients αi ∈ ½0;1�. Finally, those gating coefficients
are multiplied by the input feature map. The original study reported significant improvements
related to their additive AG on their segmentation task.30 Later, similar improvements were
obtained for 3D coronary computed tomography (CT) angiography segmentation31 or liver
CT image segmentation.32 While the attention mechanism has been implemented in the rout-
ing-by-agreement algorithm,33–36 attention-gated CapsNets are yet to be assessed. The original
routing-by-agreement algorithm aims at weighting information sent from a layer l to a layer
lþ 1. We think that it could potentially work synergistically with AG by modulating on-the-fly
the activation of a capsule layer.

The aim was to extend CapsNets for segmentation tasks in three-dimensional spaces applied
to MRI segmentation of the hippocampus to investigate the robustness of our new model, namely
3D attention-gated SegCaps (3D-AGCaps) on developmental particularities, such as the IHI. In
this aim, our approach was as follows: (1) we validated 3D-AGSCaps on hippocampal segmen-
tation against the equivalent architectures using classical convolutions in-place of capsule layers;
(2) we investigated the robustness of 3D-AGSCaps to various random rotational perturbations of
the MRI acquisitions, simulating IHI.

Considering three metrics, the Dice coefficient, the Hausdorff distance, and the volumetric
similarity, we hypothesized that

1. On typical MRIs, 3D-AGSCaps will not be statistically different from analogous CNN
architectures, both architectures producing near-optimal segmentations;

2. On atypical MRIs with rotational perturbations replicating atypical conditions, such as
the IHI, 3D-AGSCaps will produce segmentations closer to manual segmentations due to
their implicit ability to learn equivariances over various instantiation parameters.

2 Methods

2.1 Datasets Description
We used two public and one in-house datasets with manually labeled hippocampi by expert raters
(Table 1). The three datasets were manually labeled by experts, from which the first one is an
anteroposterior hippocampal segmentation of 263 hippocampi, while the other two are 50 hippo-
campi segmented in subfields. The Kulaga–Yoskovitz dataset has been segmented from head
to tail according to an in-house segmentation protocol. MemoDev has hippocampal bodies
manually segmented (AB, SP, MN, CP) following.40 Examples of both types of hippocampal
segmentation are shown in Fig. 2.

Data acquisition for our in-house dataset, MemoDev, was performed under the regulations of
an appropriate Ethical Committee board (CPP 2011-A00058-33).

2.2 From 2D to 3D Capsule Networks in MRI Segmentation of the
Hippocampus

CapsNets are compute-intensives, both in terms of computational complexity and memory
requirements.21 If they are solving issues inherent to CNNs, this is the major drawback for the
adoption of capsules. Therefore, we used the public 2D SegCaps implementation of Ref. 21 to

Poiret et al.: Attention-gated 3D CapsNet for robust hippocampal segmentation

Journal of Medical Imaging 014003-4 Jan∕Feb 2024 • Vol. 11(1)



migrate the architecture from 2D to 3D in PyTorch. Their implementation offers important
addons to reduce the number of parameters of CapsNets, such as (de)convolutional capsules,
and a locally constrained routing.

In addition to the reimplementation by adding a spatial dimension, we introduced a novel
activation function to handle multiclass classification tasks. The Squash function20 has been
originally introduced to rescale the L2-norm of the capsules to ½0; 1� without changing their
directions, with sj the output vector of the capsule j such as

Fig. 2 Random segmentation examples of the three datasets: Simpson (axial slice), Kulaga–
Yoskovitz (coronal slice), and MemoDev (coronal slice). Letters indicate spatial directions: left
(L), right (R), anterior (A), posterior (P), superior (S), and inferior (I).

Table 1 Description of the datasets used. DG, dentate gyrus; CA, cornu ammoni; Sub: subiculum.

Name N Acquisition parameters Segmentation Ref.

Simpson 263 3T; –Anterior 37
3D T1-weighted MPRAGE sequence; –Posterior

TI/TR/TE, 860/8.0/3.7 ms;

170 sagittal slices;

voxel size, 1.0 mm3;

Kulaga-Yoskovitz 50 3T; –DG 38
3D T1-weighted MPRAGE sequence; –CA

TI/TR/TE, 1500/3000/4.32 ms; –Sub
176 sagittal slices;

Voxel size, 1.0 mm3;

MemoDev 50 3T; –DG 39
Coro-T2-weighted TSE sequence; –CA1

TR/TE, 3970/89 ms; –CA2/3

46 coronal slices; –Sub

Voxel size, 0.4 � 0.4 � 1.2 mm; —
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EQ-TARGET;temp:intralink-;sec2.2;114;736vj ¼
ksjk2

1þ ksjk2
sj

ksjk
:

To segment multiple classes, we want the L2-norm of each capsule c to represent a prob-
ability distribution over the brain regions. Therefore, we introduced the Softmax-Squash
(or SMSquash) function that we used for our last capsule layer, defined as

EQ-TARGET;temp:intralink-;sec2.2;114;666vj ¼
eksjkP
eks

c
jk

sj
ksjk

:

However, migrating SegCaps from 2D to 3D worsened the computational burden of
CapsNets. This led us to introduce attention-gated capsules to route the information with greater
precision while reducing the number of routing-by-agreement iterations to improve the efficiency
of our model.

2.3 3D Attention-Gated SegCaps (3D-AGSCaps)
To complement the routing-by-agreement algorithm, we introduced a variation of the AG (Fig. 3)
coming from Ref. 30, which helps the network to focus on the target brain structures. Our AG,
implemented at the concatenation of the volumes of the downsampling and the upsampling path,
aims to modulate the L2-norm of the capsules.

The gating signal g from the layer l − 1 is upsampled using transposed capsules.21 Then,
g and x of the corresponding layer l of the downsampling path are combined to form an attention
grid of which the size matches the number of atoms. Information coming from the downsampling
path is then multiplied to the attention grid to modulate capsules’ L2-norms. Convolutions are
followed by SwitchNorm layers.41

Our final model, 3D-AGSCaps is shown in Fig. 4. It retakes a UNet-like architecture where
we used our AG in-place of the concatenation of both downsampling and upsampling paths and
assessed its efficacy through an ablation study. The resulting implementation in PyTorch is pub-
licly available under an MIT license available in GitHub repository at: https://github.com/
clementpoiret/3d-agscaps.

To perform ablation studies, we tested multiple variations of our proposed model to analyze
the impact of our AG.

2.4 Implementation Details and Evaluation Metrics
The models have been implemented in Python, using PyTorch. The training is done with PyTorch
Lightning. Data augmentation is handled with TorchIO. We trained our models with automatic
mixed precision (16-bit) and validated them using a 10-fold cross-validation. We kept a hold-out

Transposed
Capsule

Fig. 3 Our proposed AG. The input x comes from the downsampling path. The gating signal g
comes from the layer l − 1 in the upsampling path. g passes through a transposed capsule to
match x ’s size. Blue rectangles represent 3D convolutions and SwitchNorm3D. We indicated the
shape of each object below each operation, with H , W , and D the height, width, and depth of
the cube, C the number of capsules, and A the number of atoms, i.e., the number of elements in
the capsules’ vectors.
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test set for further analysis to keep samples free from potential unwanted tuning. Complete
implementation for training and validation details is listed in Table 2.

Following our cross-validation protocol to validate our models, we assessed the effect of
rotational data augmentation by training 10 times all the models with a different maximum
amounts of random rotations of the training set. Finally, to assess the behavior of the models
in the presence of atypical hippocampi, we randomly rotated our test sets (Table 2) with an
increasing amount of maximum amplitude (from 0 deg to 180 deg). As this process involves
random perturbations of the test sets, we repeated this process 10 times to better estimate the

Table 2 Implementation and validation details for each dataset. Given a fixed (hold-out) test set,
training, and validation sets are defined using a standard 10-fold cross-validation on the remaining
samples. (*) denote an “either/or” scheme, i.e., affine and elastic transformations cannot be applied
at the same time, but one of them is always applied.

Simpson (N ¼ 263) Kulaga–Yoskovitz (N ¼ 50) MemoDev (N ¼ 50)

Training N ¼ 225 N ¼ 36 N ¼ 36

64 epochs, batch size 8

AdamW, learning rate 1e-3

Cosine annealing scheduler
(no restart, no warm-up)

Stochastic weight averaging

Validation N ¼ 25 N ¼ 4 N ¼ 4

10-fold cross-validation

Test N ¼ 13 N ¼ 10 N ¼ 10

Hold-out test set

Preprocessing 1. Crop/pad around hippocampus

2. Z -normalization

Augmentation 1. Left/right flips (p ¼ 0.5)

2a. Affine transformations (p ¼ 0.8)*

2b. Elastic deformations (p ¼ 0.2)*

3. Gaussian noise (p ¼ 0.5)

4. Random contrast (p ¼ 0.5)

Stem
INPUT

MRI (3T)

Capsule
Stride 2

Capsule
Stride 1

Capsule
Stride 2

Capsule
Stride 1

Capsule
Stride 2

Capsule
Stride 1

TCaps +
Attention

Capsule
Stride 1

TCaps +
Attention

Capsule
Stride 1

TCaps +
Attention

SegCaps

Reconstructed
Hippocampus

Segmentation

Concatenation along capsule dimenstion

2-Norm

Decoder

Fig. 4 Attention-gated SegCaps for volumetric segmentation (3D-AGSCaps). AG are imple-
mented after our transposed capsules (orange rectangles) to ensure both inputs are of the same
size. Our network takes an MRI as input (of size 643 in this example) and outputs a reconstruction
of the original hippocampus (without the background class) alongside the segmentation.
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variability induced by our artificial alterations of the MRIs. Segmentations are assessed with the
Dice coefficient (DC), the volumetric similarity (VS), and the Hausdorff distance (HD) computed
with PyMia. Given a manual segmentation ym and a predicted segmentation yp:

• the DC is an overlap metric ranging from 0 (no overlap), to 1 (full overlap) defined

as DC ¼ 2jym∩ypj
jymjþjypj,

• the HD is a metric of surfacic distance ranging from 0 to +inf. With the directed Hausdorff
distance between two sets X and Y, such as hdðX; YÞ ¼ max x ∈ X miny∈Ykx − yk2, the
HD is defined as HDðym; ypÞ ¼ maxðhdðym; ypÞ; hdðyp; ymÞÞ,

• the VS is a comparison between volumes of two segmentations ranging from 0 (complete
dissimilarity between volumes) to 1 (exact match between volumes). With Sm and Sp the
volumes of a region S given a manual and a predicted segmentation, respectively, it is

defined as VS ¼ 2
jSm∩Spj
jSmþSpj :100%.

We computed each metric on a per-channel basis to assess the quality of each class, then
averaged across classes to get a general score. In order to evaluate our hypotheses, we performed
a two-way ANOVAwith model types and rotation angles of the test images as independent var-
iables. p-values are corrected using a Benjamini–Hochberg false discovery rate. While CNNs
were trained using a focal Tversky loss Ls.

42 Given an input x, our segmentation loss Ls is
defined with TP and TN the true positives and negatives, FN and FP the false positives and
negatives, and α ¼ 0.3, β ¼ 0.7, γ ¼ 3∕4 such as

EQ-TARGET;temp:intralink-;sec2.4;114;469Ls ¼
�
1 −

TP

TPþ βFNþ αFP

�
γ

:

Values of the hyper-parameters α and β are following the recommendations of their original
paper: weighing more the FN enhanced convergence by shifting the focus on minimizing the FN.
According to the authors, it helped balance precision–recall scores and gave better DC on a
similar architecture of ours. 3D-AGSCaps uses a combination of Ls and the mean squared error
of the reconstruction of the hippocampus x̂. Thus, our loss L for our 3D-AGSCaps is defined as

EQ-TARGET;temp:intralink-;sec2.4;114;371L ¼ Ls þ
1

n

X
ðxi − x̂iÞ2:

2.5 Comparison with Analogous Convolutional Models
We benchmarked 3D-AGSCaps against the best-known models used in the hippocampal seg-
mentation literature in a 3D approach:

• UNet (16.3M),43 the baseline of most segmentation models, consisting of an auto-encoder
architecture with skip connection between layers of the same depth,

• Residual UNet (35.0M),44,45 grouping every couple of convolutions with the aim to
stabilize the training of deeper networks,

• and their counterparts DUNet (16.7M) and residual DUNet (35.5M),14 replacing the second
to last skip connection with a dilated dense network of convolutions to improve the infor-
mation flow between the encoder and the decoder.

3 Experimental Results

3.1 Ablation Studies
Results of ablation studies (Table 3) across the three datasets revealed that the best overlap (DC)
between HSF was obtained by models with the AG (e.g., 0.872� 0.028 versus 0.834� 0.058 for
Kulaga–Yoskovitz). The 10-fold cross-validation results are reported in Table 3. For the quality
of the reconstruction (Table 4), we showed a significant impact of the reconstruction (p ¼ 0.034,
T ¼ 5.262, BF10 ¼ 3.196, Cohen’s d ¼ 0.032). An example of the reconstruction is shown in
Fig. 4. However, we found no significant differences regarding the value of α (p > 0.05,
Table 4).
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3.2 3D-AGSCaps: Comparison with Analogous Convolutional Models on
Typical MRIs

We started by comparing 3D-AGSCaps against different data-augmentation strategies. Best
results on test sets are obtained with little (15 deg) to no rotational augmentation: 3D-AGSCaps
and both dilated models were showing better segmentation quality without training-time
rotational augmentation, while simpler models (UNet and Residual UNet) slightly benefited
from 15 deg maximum augmentation. On typical MRIs, we noted an overall superiority of
residual models (namely 3D-AGSCaps, Residual UNet, and Residual DUnet) compared to
the single ones (Table 5). However, among residual models, we failed to show a significant
difference (p > 0.05) on DC, but 3D-AGSCaps showed a higher HD and VS (Table 5, with a
qualitative comparison Fig. 5). We additionally monitored the computational resources required
during the training phases (Table 6).

3.3 3D-AGSCaps: Robustness to Random Rotational Perturbations
After assessing segmentation quality on typical MRIs, we evaluated generalization on randomly
rotated MRIs of our test set. An example of an MRI comprised in our test set is shown in Fig. 6,

Table 4 Impact of the reconstruction module. Evolution of segmentation with different weights α of
the loss across all three datasets, where DC is the Dice coefficient, HD is the Hausdorff distance,
and VS is the volumetric similarity. Results are presented in mean ± standard deviation.

Dataset α DC HD VS

Kulaga–Yoskovitz 0.0 0.869 ± 0.029 11.784 ± 11.831 0.960 ± 0.031

0.1 0.870 ± 0.029 10.143 ± 9.661 0.959 ± 0.031

1.0 0.869 ± 0.030 11.167 ± 10.622 0.960 ± 0.031

10.0 0.870 ± 0.029 9.843 ± 10.476 0.960 ± 0.030

MemoDev 0.0 0.664 ± 0.160 17.011 ± 22.268 0.865 ± 0.141

0.1 0.664 ± 0.161 12.970 ± 17.867 0.866 ± 0.139

1.0 0.662 ± 0.165 13.775 ± 20.456 0.869 ± 0.144

10.0 0.667 ± 0.161 14.848 ± 19.280 0.859 ± 0.149

Simpson 0.0 0.878 ± 0.037 3.977 ± 4.088 0.944 ± 0.036

0.1 0.879 ± 0.037 3.993 ± 4.339 0.944 ± 0.036

1.0 0.879 ± 0.036 4.237 ± 4.909 0.944 ± 0.036

10.0 0.878 ± 0.036 3.794 ± 3.592 0.943 ± 0.036

Table 3 Ablation study of our AG. Baseline models are capsule networks without AG. DC, Dice
coefficient; HD, Hausdorff distance; VS, volumetric similarity; and MSE, mean squared error
assessing the reconstruction head. Results are presented in mean ± standard deviation.

Dataset Model DC HD VS MSE

Kulaga–Yoskovitz Baseline (2.3M) 0.834 ± 0.058 22.173 ± 17.975 0.921 ± 0.071 1.006 ± 0.004

AG (2.4M) 0.872 ± 0.028 15.350 ± 15.516 0.962 ± 0.034 1.005 ± 0.003

MemoDev Baseline (2.3M) 0.659 ± 0.163 17.182 ± 26.403 0.835 ± 0.165 0.896 ± 0.061

AG (2.4M) 0.654 ± 0.175 10.502 ± 13.288 0.828 ± 0.181 0.897 ± 0.059

Simpson Baseline (2.3M) 0.877 ± 0.037 3.160 ± 2.234 0.937 ± 0.037 0.238 ± 0.031

AG (2.4M) 0.880 ± 0.037 2.875 ± 1.874 0.941 ± 0.036 0.236 ± 0.028
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Fig. 5 Example of attention map given an input x and its reconstruction x̂ (Kulaga–Yoskovitz data-
set). The attention map comes from the very last layer just before entering the reconstruction
decoder and the last two capsule layers.

Table 5 Effect of rotations as data augmentation during training time on segmentation quality on a
test set. Each model is trained multiple times with a varying amounts of random rotations as part of
the data augmentation pipeline, and then evaluated on (a) the Dice coefficient, (b) the Hausdorff
distance, and the (c) volumetric similarity on an unseen test set. Results are presented as
mean ± std. Bold results highlight the maximum amplitude of random rotations leading to the best
performances.

AGSCaps UNet Residual UNet DUNet Residual DUNet

(a). DC

0 deg 0.839 ± 0.098 0.664 ± 0.289 0.815 ± 0.138 0.712 ± 0.280 0.849 ± 0.096

15 deg 0.811 ± 0.120 0.676 ± 0.284 0.840 ± 0.105 0.593 ± 0.345 0.819 ± 0.126

45 deg 0.669 ± 0.218 0.415 ± 0.317 0.681 ± 0.269 0.461 ± 0.281 0.711 ± 0.234

90 deg 0.460 ± 0.342 0.331 ± 0.328 0.482 ± 0.369 0.283 ± 0.315 0.481 ± 0.361

180 deg° 0.453 ± 0.342 0.274 ± 0.372 0.368 ± 0.347 0.252 ± 0.343 0.306 ± 0.357

(b) HD

0 deg 11.376 ± 9.045 26.316 ± 19.955 5.699 ± 2.694 19.107 ± 16.640 4.934 ± 2.113

15 deg 18.502 ± 11.598 14.390 ± 16.215 5.029 ± 2.575 21.393 ± 15.304 5.991 ± 2.637

45 deg 29.278 ± 14.429 28.512 ± 15.197 16.382 ± 10.921 27.881 ± 15.240 13.209 ± 8.453

90 deg 25.868 ± 12.671 29.960 ± 14.665 24.034 ± 14.328 30.375 ± 13.002 26.238 ± 13.827

180 deg 26.912 ± 13.513 30.750 ± 11.788 27.891 ± 13.320 29.926 ± 12.436 31.018 ± 12.752

(c) VS

0 deg 0.953 ± 0.043 0.739 ± 0.302 0.928 ± 0.113 0.815 ± 0.281 0.961 ± 0.040

15 deg 0.971 ± 0.030 0.754 ± 0.308 0.963 ± 0.044 0.683 ± 0.376 0.929 ± 0.088

45 deg 0.888 ± 0.112 0.543 ± 0.350 0.834 ± 0.244 0.600 ± 0.318 0.843 ± 0.177

90 deg 0.660 ± 0.282 0.501 ± 0.352 0.618 ± 0.356 0.374 ± 0.324 0.587 ± 0.388

180 deg 0.772 ± 0.227 0.445 ± 0.372 0.525 ± 0.367 0.382 ± 0.328 0.447 ± 0.360

Table 6 Computational comparisons. Timings were monitored on a Nvidia RTX8000 and are
given only for information purposes.

AGSCaps UNet Residual UNet DUNet Residual DUNet

# Parameters 2.285M 16.318M 35.069M 16.723M 35.475M

# FLOPS 0.493T 0.148T 0.180T 0.215T 0.246T

Epoch duration (s) 59.063 17.813 21.563 19.688 23.438

Training time (min) 63 19 23 21 25
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with and without deformation. Across our three datasets, an ANOVA showed no evidence of
significant differences between all segmentation models for observations with little (15 deg)
to no rotation (p > 0.05). However, for rotations greater or equal to 45 deg, segmentation models
start to differentiate (Fig. 7). 3D-AGSCaps showed a higher DC (p ¼ 0.004, BF10 ¼ 12.588,
Cohen’s d ¼ 0.179) than its CNN counterparts, a lower HD (p ¼ 0.001, BF10 ¼ 1.638,
Cohen’s d ¼ −0.120), and a higher volumetric similarity (p < 0.001, BF10 ¼ 1eþ 15, Cohen’s
d ¼ 0.356).

4 Discussion
The aim was to validate a public implementation of 3D-AGSCaps which offers a more accurate
and fully automated segmentation on atypical populations and small datasets. We showed that
1/ 3D-AGSCaps challenged analogous convolutional architectures on hippocampal segmentation
on typical MRI that is especially relevant in clinical population, and 2/ that 3D-AGSCaps exhib-
ited robustness to random rotational perturbations (replicating atypical conditions, such as IHI)
due to their implicit ability to learn equivariances over various instantiation parameters. On the
one hand, because 3D-AGSCaps has been on-par with all other convolutional networks, we
confirmed its ability to perform hippocampal segmentation on T1w and T2w MRIs. On the
other hand, we showed that with an increasing quantity of random rotational perturbations,
3D-AGSCaps provided better segmentations than CNNs. Therefore, 3D-AGSCaps exhibits inter-
esting properties in clinical settings: a better robustness to atypical images even when trained on
small cohorts with only few patients.

4.1 3D-AGSCaps: Implementation and Ablation
We implemented a 3D SegCaps on a segmentation task and showed that 3D-AGSCaps is capable
of hippocampal segmentation, with up to 15 times fewer parameters (35.5M parameters for a
residual DUNet, against 2.3M for 3D-AGSCaps, Table 6). During our experiments, we found
that a single iteration of the routing-by-agreement algorithm leads to the best results. This is a
known effect, as previous works reported that usual routing-by-agreement algorithms may not
behave as expected, unaffecting classification results, and often producing worse results than
baseline algorithms.46

Most CapsNets use an atypical regularization and explanation technique, although the recent
alternative approach from Ref. 47. developed after the start of this work, removed it. In addition
to outputting the results of our task of interest, they output a reconstruction of the original input,
optimized through a specific term in the loss function (Fig. 4). The relative weight of this loss

Fig. 6 Comparison between automatic segmentations against manual labeling. A single unseen
hippocampi is segmented when left unaltered (original), and when altered with a random rotation
(45 deg of maximum amplitude in a random axis). We present a manual segmentation, a segmen-
tation from our model 3D-AGSCaps, and a segmentation produced by a residual DUNet from
Ref. 14.
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term in the final loss functions remains unclear in the literature. Interestingly, we found that the
reconstruction did not yield any significant enhancement of the segmentation, even if it reduced
outliers produced in the MemoDev dataset (Table 4). However, if regularization is the main goal
of the reconstruction module, other more efficient techniques should provide the same benefits
without forcing the use of additional layers. If its goal is to achieve some sort of explainability of
capsules’ atoms, tuning the coefficient defined in the loss lead to no significant improvement in
reconstruction quality. Qualitatively, reconstructions were of a relatively poor quality (e.g.,
Fig. 4), but the object of interest is recognizable enough for the sake of explanations. This
is certainly caused by the MSE term of the loss function that assumes pixel independence without
accounting for spatial relationships. MSE has been shown to produce low-quality reconstructions
compared to more recent and specific loss functions, such as the SSIM or LWSSIM.48 It has to be
noted that not all implementations use such reconstruction modules.

To deal with the problem of the exponentially increasing number of parameters when
switching from a 2D to a 3D space, we introduced AG (Fig. 3) with the aim of improving the
efficiency of information routing. Our results showed an enhancement in segmentation quality,
with a better overlap (mean DC increased by 0.012), fewer outlier voxels (mean HD reduced by
4.713), and a better VS (increased by 0.012).

4.2 3D-AGSCaps: Comparison with Analogous Convolutional Models both on
Typical and Atypical MRIs

As a traditional approach to achieve rotational equivariance would be to use data augmentation,
we assessed the effect of data augmentation on both our network (encoding equivariances of
visual patterns through the orientation of the capsules) and SotA networks with training-time
rotational augmentation (learning equivariance by learning the same pattern multiple times for
different angles). Interestingly, we found that rotational augmentation mostly deteriorated seg-
mentation quality (Table 5). At first sight, this fact may seem counterintuitive, as data augmen-
tation should improve the generalization of deep learning models. However, this is coherent with
part of the literature stating that data augmentation may increase overfitting risks,17,18 leading to a
marginal improvement on small training sets47 or even lead to a drop in accuracy on unperturbed
images.10 This highlights pieces of evidence that efficient and robust segmentations on small
training sets will benefit from networks showing built-in capacities to handle equivariances.

Given the best amount of training-time data augmentation for each model, 3D-AGSCaps did
not show a significant improvement for typical MRIs on DC (Table 5) compared with architec-
turally equivalent models,14 but showed a higher HD and VS. Overall, all models handled our
segmentation task equally well with most DC superior to 0.8, but it is worth noting that we did
not gather any clear evidence for statistically significant differences between models introduced
in Ref. 14 and classic residual UNet models. Simpler and non-residual models (UNet and DUnet)
were consistently left behind.

4.3 3D-AGSCaps: Robustness to Random Rotational Perturbations
Finally, we assessed our 3D-AGSCaps against SotA models regarding behaviors facing plausible
alterations of the hippocampus, such as the IHI. Therefore, we monitored segmentation quality
with an increasing maximum angle of random rotations up to 90 deg, following a realistic range
(Fig. 7) on test observations. Alongside the previously discussed lack of differences for typical
hippocampi (i.e., no rotation) heterogeneity was highlighted by increasing the amount of rota-
tion. For angles as small as 45 deg, 3D-AGSCaps stood out, giving a better DC with a higher VS,
followed by the two models introduced by Zhu et al. and then the UNet and Residual UNet
baselines. Those evidences support our hypothesis stating that CapsNets can segment the hippo-
campus with more robustness toward alterations such as rotations, which is beneficial when
working with clinical settings affected by data-scarcity issues.

It should be noted, however, that this improved robustness comes at the cost of computa-
tional requirements. This cost is mainly driven by the storage of activation values as vectors
instead of scalars. As of now, CapsNets suffers from scalability issues, consuming up to 10 times
the amount of GPU memory compared to CNNs with analogous architectures. This computa-
tional overhead also increased training time, from 19 min with a batch-size of 8 for a UNet, to 1 h
for 3D-AGSCaps on an Nvidia RTX 8000 (Table 6). In order to process MRIs with a CapsNet
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such as 3D-AGSCaps, the use of a specific preprocessing of the input has to be performed, such
as automatic detection of an enclosing box of both hippocampi to crop the MRI and reduce its
memory footprint. This is the reason why we also published a third-party tool called ROILoc49

(available in a GitHub repository at: https://github.com/clementpoiret/ROILoc), as a modest sol-
ution to this limit. In addition, recently introduced approaches, such as Ref., 47, optimized cap-
sule networks by removing parts of the network from the original implementation, such as the
reconstruction module.20 As their implementation only works for binary classification tasks and
because they did not replace the routing-by-agreement with an attention mechanism, we suggest
the merging our two main contributions as a future interesting experiment: their fast implemen-
tation with our AG and the use of our SMSquash function to enable multiclass segmentation
workflows.

Therefore, the use of CapsNets for MRI processing has to be justified by an underlying
hypothesis such as the presence of IHI or hippocampal sclerosis in a pathological population.
While this type of architecture seems promising, we believe it would be important to further
investigate the computational efficiency of CapsNets to find ways to address these limitations.
For example, it could be interesting to explore the GLOM architecture,50 although still proto-
typical, but introduced specifically to solve some of the difficulties posed by the capsule design.
Alternatively, as one of the main issues to solve this complex problem lies in the scarcity of
labeled datasets, other tracks might be interesting to explore. In this way, self-supervised pre-
training could help with the relative uselessness of rotational data augmentation and semi-
supervised training, such as the recently introduced annotation-efficient deep learning (AIDE)

(a)

(b)

(c)

Fig. 7 Mean evolution of segmentation quality with respect to an increasing degree of random
rotations. Comparisons of (a) the Dice coefficient, (b) Hausdorff distance, and (c) volumetric
similarity between our model, 3DAGSCaps, and CNNs of similar architecture from the literature,
ResDUNet and DUNet from Ref. 14, and simpler UNets with and without residual blocks.
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framework,51 seems to provide a simple way to handle segmentation tasks with scarce and noisy
labeling.

To date, the segmentation of the hippocampus can capture anatomical variability, such as the
IHI,4 a developmental abnormality occurring in consequent subsets of the healthy or pathological
population, such as in temporal lobe epilepsy or hippocampal sclerosis. The IHI is gradual,
locally impacting shapes of the hippocampus. Because capsules in our architecture have a kernel
size of 3, they can encode instantiation parameters as finely as a local cube of 33 voxels.
Therefore by construction, 3D-AGSCaps can handle the naturally occurring variations of the
IHI going up to 90 deg rotations, by modeling the verticality and roundness of the hippocampal
body and the collateral sulcus (local and global rotational statistical equivariance of capsules) or
the medial positioning of the hippocampus (translation equivariance of convolutions).5 However,
our experiments relied on relatively small datasets with limited labeled training data. For exam-
ple, the MemoDev dataset only contained 50 labeled hippocampal volumes. While our results
demonstrate 3D-AGSCaps can achieve robust segmentation even when trained on small datasets,
validating the method on larger cohorts will be an important next step. Expanding the training
data to encompass more anatomical variability could further improve segmentation accuracy.
Finally, this work focused solely on hippocampal segmentation as a proof of concept for 3D
capsules. Applying 3D-AGSCaps to other anatomical structures and segmentation tasks, such
as brain lesions in multiple sclerosis or tumor detection, represents a promising direction for
future research. Overall, this work provides initial evidence that 3D capsule networks can achieve
robust medical image segmentation, but larger-scale validation and expanded applications will
help realize the full potential of this approach.

The robustness of 3D-AGSCaps to rotational variations demonstrated in this study suggests
the method may have clinically useful applications beyond hippocampal segmentation. For
example, the hippocampus is affected by pathologies, such as hippocampal sclerosis and
Alzheimer’s disease, that can alter its shape and orientation. By learning robust equivariant
representations, 3D-AGSCaps could enable more accurate segmentation and quantification of
hippocampal subfields in these disease states compared to conventional CNNs. This in turn could
shed light on how specific subregions are impacted over disease progression. In addition, other
brain structures prone to rotational variations during development or disease may benefit from
analysis with 3D-AGSCaps. More broadly, the capsule architecture’s inherent robustness could
prove useful for segmenting obscured or partially imaged structures in cases of traumatic injury
or lesions. While further validation on diverse clinical datasets is needed, this work provides
initial evidence that 3D-AGSCaps can achieve robust segmentation even when anatomical varia-
tion poses challenges for conventional deep learning methods.

5 Conclusion
With respect to not-so-rare atypical variations of the hippocampus, we assessed the usefulness of
Capsule Networks in hippocampal segmentation both in an anteroposterior and in subfields man-
ner. With our newly introduced architecture, 3D-AGSCaps, we validated a public implementa-
tion of 3D capsules. On the one hand, we confirmed the ability to perform hippocampal
segmentation on T1w and T2w MRIs with 3D-AGSCaps, even if we found no evidence of supe-
rior segmentation quality for typical hippocampi (i.e., without rotation). On the other hand, we
demonstrated that with an increasing quantity of random rotational perturbations, 3D-AGSCaps
provided better segmentations than analogous CNNs due to their implicit ability to learn equiv-
ariances over various instantiation parameters. Unfortunately, we also found capsules to be
extremely demanding for GPU memory, which is the main drawback of this methodology.
This concern raises the need for further investigations to bring back scalability into this prom-
ising methodology offering enhanced robustness, especially given that the hippocampus is a
small brain region demanding for higher resolution MRIs.
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