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1.  INTRODUCTION

The hippocampus is known to play a vital role in core 
cognitive functions, including learning and memory. It is 
subdivided into several subfields, including the dentate 
gyrus (DG), cornu ammonis (CA) 1-4, and the subiculum. 
Subfields are arranged sequentially along its transverse 
axis, forming a characteristic crescent shape. Within 
each subfield, layers are stacked radially, meaning they 
are arranged perpendicular to the surface of their respec-

tive subfield like the layers of an onion, following its curve. 

This radial organization of layers is maintained as each 

subfield curves along both the transverse and longitudi-

nal axes of the hippocampus, creating a continuous 

three-dimensional structure.

While the human hippocampus has been extensively 

studied at the macroscale using functional magnetic  

resonance imaging (fMRI), the underlying microcircuits  

at the mesoscale (e.g., laminar level) have barely been 
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investigated (Maass et al., 2014). In contrast to the six-
layered neocortex, the hippocampus contains three (par-
tially subdivided) layers. Furthermore, animal research 
has shown that in stark difference to the classical canon-
ical microcircuits in the neocortex, differentiating feedfor-
ward and feedback pathways (Douglas et al., 1989), the 
hippocampal projections are primarily feedforward. Nev-
ertheless, inputs to hippocampal pyramidal cells can be 
differentiated based on their position along the dendritic 
tree (a schematic depiction is given in Supplementary 
Fig. S1): While synaptic connections along the “trisynap-
tic pathway” (Cheng, 2013; Jing et al., 2021; Schultz & 
Rolls, 1999) (entorhinal cortex (EC) → DG → CA3 → CA1) 
terminate at perisomatic CA3 and CA1 layers (i.e., stra-
tum (St.) pyramidale and St. radiatum), direct EC projec-
tions terminate at distal apical dendrites (in St. 
lacunosum-moleculare) of CA1 and CA3; CA3 receives 
additional input to proximal apical dendrites via its abun-
dant recurrent collaterals (Sammons et al., 2024). Impor-
tantly, each layer maintains its identity and specific 
connectivity patterns within its respective subfield 
throughout the entire hippocampus. This means that a 
layer’s function and inputs are always constrained by the 
subfield it belongs to.

Recent advances in ultra-high field (UHF) fMRI made it 
possible to obtain structural (Lüsebrink et al., 2021) and 
physiological (Haast et  al., 2024; Maass et  al., 2014) 
information from the human hippocampus with sub-
millimeter resolution. This high spatial resolution allows 
fMRI responses to be probed as a function of depth (also 
known as laminar fMRI). This methodology holds the key 
to investigating the above-mentioned projections non-
invasively in humans. However, methodological limita-
tions and physiological constraints pose challenges for 
the design and interpretation of cortical depth-dependent 
fMRI experiments of the hippocampus. The most-widely 
used contrast for laminar fMRI is the gradient echo (GRE) 
blood oxygenation level dependent (BOLD) contrast due 
to its high sensitivity (Boxerman et al., 1995; Koopmans 
& Yacoub, 2019; Weisskoff, 1996) and efficient sequence 
implementation with echo planar imaging (EPI) readouts. 
However, GRE-BOLD responses at the laminar level are 
weighted toward large venous vessels, the well-known 
draining vein bias. While the main alternative to GRE-
BOLD, vascular space occupancy (VASO), can measure 
laminar responses free of venous contamination in the 
neocortex (Finn et al., 2019; Huber et al., 2014, 2017), it 
suffers from an intrinsically low temporal efficiency and 
reduced sensitivity to CBV changes in inferior brain struc-
tures which renders VASO currently unviable in the hip-
pocampus (Huber et  al., 2024). In the neocortex, the 
venous drainage pattern and its effect on laminar fMRI 
has been thoroughly described (Havlicek & Uludağ, 2020; 

Polimeni et al., 2010; Turner, 2002; Uludağ et al., 2009). 
However, because both the anatomy and the vasculariza-
tion of the hippocampus are considerably different from 
those of the neocortex, it is currently not known how the 
venous bias would affect hippocampal laminar BOLD 
responses. Hence, it is imperative to characterize the dis-
tribution of large blood vessels and their influence on hip-
pocampal laminar fMRI. Furthermore, even though UHF 
fMRI provides a higher baseline signal-to-noise ratio 
(SNR) and an improved BOLD contrast (Gati et al., 1997; 
Ogawa et  al., 1993), it is also more prone to artifacts 
associated with main magnetic field (B0) and transmis-
sion field (B1) inhomogeneities (Farahani et al., 1990; Van 
De Moortele et al., 2005). The anatomical location of the 
hippocampus renders it particularly susceptible to these 
inhomogeneities and hence a challenging region for 
imaging. Therefore, it is necessary to characterize high-
resolution functional imaging of the human hippocampus 
in terms of depth-dependent mapping of the T2* relax-
ation time, signal stability, and noise characteristics to 
allow for a better interpretation of high-resolution GRE-
BOLD activation patterns.

As a prerequisite for transferring neuroscientific fMRI 
experiments from low to high spatial resolutions and for 
validating other fMRI contrasts and/or sequences, a 
benchmark experiment is necessary. In the context of 
autobiographical memory (AM), neuropsychological and 
fMRI studies have shown that several subfields of the 
hippocampus are involved in AM. The subfields include 
CA1 (Bartsch et  al., 2011), CA3 (Bonnici et  al., 2013; 
Chadwick et al., 2014; Miller et al., 2020), and the subic-
ulum (Barry et al., 2021; Leelaarporn et al., 2024), making 
an AM experiment an ideal candidate for benchmarking.

In this work, we leverage sub-millimeter GRE-BOLD 
fMRI performed at 7 T to answer two fundamental ques-
tions on laminar fMRI of the human hippocampus:

	 1)	� What is the laminar distribution of venous draining 
patterns in different hippocampal subregions and 
how does it affect the interpretation of hippocam-
pal laminar responses?

	 2)	� Can we perform a benchmark laminar fMRI exper-
iment which robustly elicits single-subject hippo-
campal activation using the GRE-BOLD contrast? 
Can we obtain interpretable results despite the 
venous bias?

To answer the first question, we invited nine par
ticipants to perform a breath-holding experiment while 
acquiring high-resolution multi-echo T2*-weighted 
images. Additionally, we acquired high-resolution struc-
tural T1- and susceptibility-weighted images as well as 
time-of-flight (TOF) images. The hypercapnic challenge 
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led to a ubiquitous increase in blood flow and thus to a 
widespread BOLD response. Sampling at different echo 
times allowed us to differentiate signal changes inside 
venous vessels from signal changes in the parenchyma. To 
address the second aim, the same cohort was scanned 
while performing an autobiographical memory task on a 
separate day. This task was shown to elicit reliable single 
subject activity at high-spatial resolution using GRE-BOLD 
(Leelaarporn et al., 2024). By modeling the hippocampus 
as a folded surface, we investigated unique depth-
dependent features of the hippocampal subfields during 
memory processing contrasted against a control condi-
tion, and during the construction (i.e., initial search phase 
for a specific memory) versus the elaboration (i.e., reliving 
the perceptual details of the memory with autonoetic con-
sciousness) of autobiographical memories (Daviddi et al., 
2023). We linked the results of the two experiments to 
interpret the resulting profiles during AM with regard to 
neural activity and to obtain MRI parameters relevant for 
future neuroimaging studies of the hippocampus. Alto-
gether, the presented methods and results will facilitate 
interpretation of hippocampal laminar fMRI responses and 
validation of other fMRI contrasts. Furthermore, our find-
ings provide mechanistic insights into hippocampal func-
tion at the mesoscale.

2.  METHODS

All data were acquired on a 7 T system (MAGNETOM 
Terra, Siemens Healthcare, Erlangen, Germany) equipped 
with a 1 channel transmit, 32 channel receive head coil 
(NOVA Medical Inc.). Nine healthy participants (3 female, 
26.4 ± 6.0 years) were scanned in both experiments after 
giving informed consent according to the guidelines of the 
local ethics committee. All processing and analysis code 
can be found in the public Github repository (https://github​
.com​/viktor​-pfaffenrot​/hippocampus​_laminarfMRI​_code).

2.1.  Breath-holding experiment

2.1.1.  MR data acquisition

2.1.1.1.  Anatomical scans.  Whole-brain T1-weighted 
anatomical reference data were acquired with an 
MP2RAGE sequence (Marques et al., 2010) with fat nav-
igators (Gallichan et al., 2016) at 0.75 mm isotropic reso-
lution. To obtain veno- and angiograms, vendor-provided 
susceptibility-weighted (SWI) and time-of-flight (TOF) 
sequences were used to acquire images at 0.3 x 0.3 x  
0.6 mm resolution (interpolated to 0.15 mm in-plane). The 
field-of-view (FOV) was positioned such that the long axis 
of the FOV was parallel to the long axis of the hippocampus 

Table 1.  MRI acquisition parameters.

Anatomy Vasculature Functional

Parameter MP2RAGE SWI TOF 2D FLASH 3D EPI

TR [ms] 6000 28 23 976 58.3

TE [ms] 1.85 15 5.15 2,6,10,14,17,20 22.2

TRvol [ms] — — — 40992 2210

TI1/TI2 [ms] 800/2750 — — — —

FA1/FA2 [deg] 4/5 10 20 53 13

GRAPPA 3 (A-P) 2 (R-L) 3 (R-L) 4 (A-P) 3 (A-P)

No. of slices/partition 192 44 44 40 38

Slice direction Sagittal Transversal Transversal Transversal Transversal

In-plane FOV [mm] 240 x 240 216 x 162 216 x 162 184 x 179 162 x 178

Matrix size 320 x 320 x 192 720 x 540 x 44 
(1440 x 1080 x 44  
interpolated)

720 x 540 x 44  
(1440 x 1080 x 44  
interpolated)

230 x 224 x 40 180 x 198

Resolution [mm] 0.75 x 0.75 x 0.75 0.3 x 0.3 x 0.6 
(0.15 x 0.15 x 0.6 
interpolated)

0.3 x 0.3 x 0.6  
(0.15 x 0.15 x 0.6 
interpolated)

0.8 x 0.8 x 0.8 0.9 x 0.9 x 0.9

Phase partial Fourier 6/8 6/8 6/8 6/8 6/8

Bandwidth [Hz/px] 290 150 90 1360 1068

Echo spacing [ms] — — — — 1.04

Acquisition time [m:s] 14:22 4:40 2:59 14:36 18:09

Number of volumes 1 1 1 19 489

Number of runs 1 1 1 2 3

https://github.com/viktor-pfaffenrot/hippocampus_laminarfMRI_code
https://github.com/viktor-pfaffenrot/hippocampus_laminarfMRI_code
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(see Supplementary Fig.  S2A). Sequence details are 
shown in Table 1.

2.1.1.2.  Breath-hold scans.  For the breath-hold experi-
ment, data were acquired at 0.8 mm isotropic resolution 
using a 2D multi-echo FLASH sequence. The FOV was 
positioned similarity to that of the SWI and TOF acquisi-
tions. Echo times were TE = 2, 6, 10, 14, 17, and 21 ms. 
An additional phase stabilization echo (Hu & Kim, 1994) 
was acquired at the start of each echo train. This echo 
serves the purpose of capturing phase fluctuations in the 
raw MR signals which are corrected in the subsequent 
offline reconstruction (see section 2.1.2.2). The effect the 
phase stabilization has on the data quality is shown in 
Supplementary Figure  S2B-E. Shot-to-shot TR was 
976 ms and 40 slices were acquired, resulting in a volume 
TR of TRvol = 40992 ms. For each participant, two runs of 
19 volumes were acquired with each run lasting 14:36 min.

2.1.1.3.  Breath-hold paradigm.  The maximum BOLD 
response depends on the breath-hold duration and, for the 
volume TR used in this study, peaks about 10 s after the 
participant started to breathe again (Haller & Bartsch, 
2009). To account for this delay, the paradigm was 
designed as follows: One volume of normocapnia (labeled 
as ‘rest’) was followed by a transition volume where the 
participant was cued to hold their breath in 5 s. The partic-
ipants were instructed to slowly inhale into their abdomen 
once the breath-holding command appeared and to hold 
their breath until the command disappeared. Ten seconds 
before the breath-hold period ended, the acquisition of the 
active volume started. The temporal shift between para-
digm and image acquisition was designed such that the 
peak of the BOLD response (10 s after hypercapnia) coin-
cided with the acquisition of the k-space center of the 
‘active’ volume. The participants were instructed to slowly 
exhale after the breath-hold command disappeared. The 
block of ‘rest,’ ‘transition’, ‘active’ was repeated six times 
and a run ended with a rest volume.

2.1.2.  Data processing

2.1.2.1.  Anatomical scans.  The image corresponding to 
the first inversion time (INV1) and the unified image (UNI), 
that is, the image calculated from both INV1 and the 2nd 
redout (INV2), of the MP2RAGE sequence were pre-
processed using presurfer (Kashyap, 2021). Both pro-
cessed images were denoised using the BM4D filter 
(Lüsebrink et al., 2021; Maggioni et al., 2013). The image 
quality improvement is shown in Supplementary Fig-
ure S3, and filter parameters deviating from default can 
be found in our github repository. To obtain surface 
boundaries and hippocampal subfield segmentations, the 

snakemake (Köster & Rahmann, 2012) implementation of 
hippunfold (DeKraker et al., 2018, 2022) (https://hippun-
fold​.readthedocs​.io) was used. In particular, the denoised 
INV1 image was used as a proxy for a T2-weighted input 
due its T2-like image contrast (see Fig. 1 and Supplemen-
tary Fig. S3). Figure 1 shows the 3D input of a representa-
tive subject to hippunfold (1A, B) and zoomed sections of 
the hippocampus together with the generated segmenta-
tions and surfaces (1C, D). The orientation shown in D is 
identical to that of the schematic drawing in Supplemen-
tary Figure S1. In order to present subject-averaged sur-
face representations, we created a ‘canonical’, that is, 
average surface for all subjects using the connectome 
workbench (Marcus et  al., 2011) command surface-
average with the hippunfold surfaces of all subjects as 
input. Figure 1E shows the 3D canonical surface model of 
the outer surface (blue surface in C and D) of the left hip-
pocampus in native, that is, folded space, while 1F 
depicts the unfolded 2D representation of that surface.

Both SWI and TOF images were denoised using BM4D 
with a fixed noise estimate σ of 30. SWI was receiver bias-
field corrected and filtered for veins using a Frangi vessel-
ness filter (Frangi et al., 1998) (α = β = 0.5, Fig. 2B). TOF 
images were filtered for arteries using a custom filter based 
on a Haar 2-D wavelet transform. Both vessel-filtered 
images were subsequently registered to the T1-weighted 
image using ITK-SNAP Version 3.6.0 (Yushkevich et  al., 
2006) and SPM12 Version 7487 (Welcome Trust Centre for 
Neuroimaging, London). Finally, the resampled images 
were projected onto the inner and outer surface of the hip-
pocampus as given by hippunfold using the connectome 
workbench’s (Marcus et  al., 2011) command volume-to-
surface-mapping. For subject-averaged results, these sur-
faces were averaged over subjects and plotted on the 
canonical surface.

2.1.2.2.  Breath-hold scans.  Breath-hold scans were 
reconstructed offline using BART (v. 0.8.00) (Uecker et al., 
2015). In particular, ESPIRiT (Uecker et  al., 2014) was 
used to obtain coil sensitivity maps from the autocalibra-
tion signal (ACS) before running an iterative SENSE 
(Pruessmann et  al., 1999, 2001) reconstruction with a 
regularization factor of 0.005 (pics -r 0.005). To account 
for potentially low SNR, all volumes were denoised using 
the BM4D filter with the same settings as used for the 
MP2RAGE.

2.1.2.3.  Functional processing.  Denoised FLASH images 
were pre-processed similar to previous work (Pfaffenrot & 
Koopmans, 2022; Pfaffenrot et al., 2021) using MATLAB 
code based on SPM12. In short, after slice-time correc-
tion, data were realigned within each run using a brain 
mask as weights. Motion between runs was accounted for 

https://hippunfold.readthedocs.io
https://hippunfold.readthedocs.io
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by realigning a biasfield-corrected volume average of the 
third TE (10 ms) of each run. Registration to the anatomy 
was performed using ITK-SNAP and a rigid transformation, 
guided by a mask which excluded areas of strong signal 
dropout in the sphenoid sinus and maxillary sinuses. All 
transformation matrices were concatenated, and a single 
resampling operation using a 4th-order spline was applied.

2.1.2.4.  Laminar profile extraction.  The functional data 
were sampled as a function of cortical depth using cus-
tom MATLAB code (https://github​.com​/viktor​-pfaffenrot​
/hippocampus​_laminarfMRI​_code​/blob​/main​/layerfication​
/VPF​_create​_hippocampus​_layers​.m). In particular, we 
used the surfaces generated by hippunfold, labeled inner, 

midthickness, and outer. These, in turn, are formed first, 
by solving the Laplace equation for two perpendicular 
directions to obtain a single surface (DeKraker et  al., 
2022). This is then expanded along the depth of hippo-
campal GM while obeying the equivolume principle 
(Waehnert et al., 2014) to form the midthickness and the 
outer surface. For each hippocampal subfield, signals 
were sampled between the surface vertices of the inner 
and outer hippocampal boundary, that is, the inner and 
outer hippunfold surface (see Supplementary Figs.  S1 
and S4A, B). In particular, the distance between the verti-
ces defining the inner and the vertices defining the outer 
surface was equidistantly split into 20 coordinates, i.e., 
bins. Here, the outer surface refers to the transition region 

Fig. 1.  Input and output of the anatomical hippunfold pipeline. (A) Sagittal view of the BM4D-denoised INV1 image of 
a representative subject used as input to hippunfold. (B) Coronal view of the same subject. (C, D) Zoomed section of the 
hippocampus showing the generated segmentations and surfaces. (E) Canonical, 3D model of the folded outer surface 
(blue line in C and D) of the left hippocampus. The sectional plane approximates the sagittal view as shown in C. The 
curved dashed line connecting points α and β shows the folding direction of the hippocampus. (F) The unfolded, 2D 
surface representation, generated by effectively flattening the curved line in E. The greek letters α, β, γ, and δ indicate the 
reference points between the folded and unfolded surfaces.

https://github.com/viktor-pfaffenrot/hippocampus_laminarfMRI_code/blob/main/layerfication/VPF_create_hippocampus_layers.m
https://github.com/viktor-pfaffenrot/hippocampus_laminarfMRI_code/blob/main/layerfication/VPF_create_hippocampus_layers.m
https://github.com/viktor-pfaffenrot/hippocampus_laminarfMRI_code/blob/main/layerfication/VPF_create_hippocampus_layers.m
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between stratum oriens and parts of St. pyramidale clos-
est to St. oriens. The inner surface corresponds to the 
transition between St. radiatum and parts of St. pyrami-
dale closest to St. radiatum. The voxel signal  
was resampled at these coordinates using a 3rd-order 
polynomial. To account for the high curvature of the hip-
pocampus, the midthickness depth, provided by hippun-
fold and obeying the equivolume principle, was used as a 
landmark in the sampling process. That is, the sampling 
algorithm is forced to include the midthickness depth into 
the set of bins. The effect on the laminar profiles is shown 
in Supplementary Figure S4C-F. In case of CA1 and CA2, 
the sampling was extended by 10 bins beyond the inner 
surface, that is, further toward the hippocampal sulcus, 
to also sample parts of the St. lacunosum and St. mol
eculare, i.e., the innermost layers corresponding to the 
location of distal apical dendrites. In case of CA4 and the 
DG, only two bins were defined as there is no clear defi-
nition of ‘inner’ and ‘outer’ surface. Hence, given the ana-
tomical structure as shown in Figure  2A (mod. From 
Duvernoy et al., 2013, Fig. 3.7) and the segmentation of 
hippunfold, the entire DG was labeled ‘inner’ and the 
entire CA4 was labeled ‘outer’. This procedure was car-
ried out for each functional volume and allowed us to 
obtain, separately for each subfield, a time course at 
each cortical depth that follows both the unique anatom-
ical and laminar characteristics of each subfield.

2.1.3.  Data analysis

The projected veno- and angiograms were rescaled to be 
within the interval [-100,0] and [0,100], respectively, and 
vessel density was estimated by dividing the number of 
vertices passing a threshold over the total number of ver-
tices within each subfield. The threshold was -3 a. u. and 
1 a .u. for veins and arteries, respectively, and was cho-
sen to reduce the number of falsely classified vessels.

The laminar data of one subject were disregarded due 
to too excessive motion (1.5 mm maximum displacement 
due to translation or rotation in any run). For the remain-
ing eight subjects, data of each run were high-pass fil-
tered with a cutoff period of 1/(246 s) and the first and the 
last volumes of each run were removed to account for 
edge effects at the boundaries of each run’s time series 
as a result of high-pass filtering (Stoewer et  al., 2012). 
Finally, the profiles were averaged over runs and over the 
rest and the active condition, respectively.

For the rest condition, cortical depth-dependent T2* 
was estimated by fitting a mono-exponential signal decay 
function to each bin and subfield using MATLAB’s 
Levenberg-Marquardt nonlinear least-squares algorithm.

Breath-hold induced signal change was calculated as 
breath-hold − normal breathing. To relate signal change 

to venous vessel density, we averaged over echoes and 
fitted a linear line to each signal change profile for each 
subject and subfield to estimate the slope between the 
outer and inner surface. Although phase stabilization 
accounts for a high degree of unwanted artifacts, some 
nuisance signal fluctuations, scaling with echo time, were 
still present. Using a similar weighted echo approach as 
described in Poser et al. (2006), we tried to reduce their 
effect by weighting each echo average and penalizing 
longer TE as given by

	
wi =

TEi
−1

i∑ TEi
−1 .

	

(1)

2.1.4.  Statistical analysis

The venous vessel density was compared between the 
inner and outer surface for each subfield using MATLAB 
and its build-in Wilcoxon signed-rank test corrected for 
multiple comparisons with Hochberg’s step-up Bonfer-
roni procedure (Hochberg, 1988). Similarly, the Wilcoxon 
signed-rank test was used to test whether the estimated 
slopes of the signal change profiles are significantly dif-
ferent from zero.

The relationship between the slope of the signal 
change as a measure for the bias in laminar fMRI, and the 
vessel density difference was modeled using a linear 
mixed-effects model in R (version 4.3.3) utilizing the lme4 
package. To investigate whether the difference in vessel 
density was a significant main effect, we compared a 
model with the density change as a predictor with one 
including only the random effects. These were modeled 
as random intercepts for subject and subfield. Both mod-
els were compared using an approximated F-test based 
on the Kenward-Roger approach for small sample sizes 
(Kenward & Roger, 1997) as implemented in the pbkrtest 
package. Marginal and Conditional R2 were obtained with 
the performance package (Lüdecke et al., 2021).

2.2.  Autobiographical memory experiment

2.2.1.  MR data acquisition

The same participants who performed the breath-hold 
task were invited for the autobiographical memories (AM) 
task, hence anatomical data were not re-acquired. Func-
tional AM data were obtained using the GRE-BOLD  
contrast and a 3D-EPI readout (Stirnberg & Stöcker, 
2021) at 0.9 mm isotropic resolution. The key parameters 
were: TE/TR/TRvol = 22.2/58.3/2210 ms, FOV = 162 x 178 x  
34 mm. The remaining sequence details are given in 
Table 1. For each participant, three runs of 489 volumes 
were acquired with each run lasting 18:09 min. In order to 
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Fig. 2.  Vascular distribution and breath-hold induced signal change. (A) Schematic of the venous vessel distribution 
in the human hippocampus. The hippocampus exhibits two main venous drainage pathways: One along the sulcal 
intrahippocampal veins (green arrow) and one along the subependymal intrahippocampal veins (red arrow). From a 
laminar fMRI perspective, it is unclear in which direction the venous bias present in GRE-BOLD points to. For example, 
for CA1, the signal change could either be biased toward the inner surface (in direction of the green arrow) or toward the 
outer surface (in direction of the red arrow) (figure adapted from Duvernoy et al., 2013). (B) High-resolution SWI image 
filtered for veins (blue structures in zoomed section). Subject-averaged vascular distribution of large vessels at the inner 
(C) and outer (D) surface (veins and arteries in blue and red, respectively) shown on the folded hippocampus. Colored 
borders represent the demarcation between subfields. The venous density exhibits a clear subfield-specific differentiation 
between the inner and outer surface. (E) Same data as in (C, D) plotted on the unfolded hippocampal surfaces. From 
bottom to top: Subiculum, CA1-4. Red arrows in (C-E) indicate reference points. (F) Breath-hold induced signal change 
with vascular weighting. The signal changes closely resemble the venous vasculature and is higher at the inner surface for 
the subiculum and CA1, while for CA2-4, the opposite is the case, although less in magnitude. (G) Venous vessel density 
ρ for the inner and outer layer of each subfield, averaged over hemispheres. Subiculum and CA1 show a significantly 
higher vessel density at the inner compared to the outer surface (* pup < .05). CA3 shows a significantly higher density at 
the outer compared to the inner surface. (H) Vascular-weighted, subject- and echo-averaged signal change during breath-
hold as a function of cortical depth for each subfield (shaded area corresponds to SEM). Note that in case of CA4/DG, no 
layer sampling was performed (see section 2.1.2.4). Instead, vertices of the entire region were averaged. (I) Relationship 
between the slope of the signal change curves in (H) and the difference in vessel density Δρ in (G) An LME revealed a 
significant main effect of Δρ.
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investigate data reliability, two subjects were scanned 
twice on different days. For distortion correction, the 
same sequence with reversed-phase encoding was used 
and 13 volumes were acquired.

2.2.1.1.  Autobiographical memory paradigm.  The func-
tional task was an autobiographical memory paradigm 
adapted from Leelaarporn et al., 2024 (see also McCormick 
et al., 2015). In brief, the task consisted of AM trials as a 
test condition that were randomly interleaved with mental 
arithmetic (math) trials as control. In the AM trials, partic-
ipants were asked to retrieve autobiographical episodic 
memories following the presentation of general cues 
(e.g., ‘party’, ‘pet’, etc.). They had to press a button to 
indicate when they had found a memory related to the 
cue, and to vividly imagine the event with autonoetic con-
sciousness with as much detail as possible for the 
remainder of the trial. The before and after button press 
phases of each trial, thus, correspond to the construction 
and elaboration phases of autobiographical memory 
retrieval, respectively (Daviddi et al., 2023). Participants 
were additionally asked to retrieve recent autobiographi-
cal memories (no older than 2  years) to ensure hippo-
campal activation as remote autobiographical memories 
have been suggested to evoke less hippocampal activity 
compared to recent ones (Gilmore et al., 2021).

The AM trials were randomly interleaved with math tri-
als in which subjects had to perform a simple arithmetic 
operation (e.g., 30 + 15). Participants were instructed to 
press a button once they found the result, and to recur-
sively add 3 to the result (e.g., 45 + 3 + 3 + 3…) until the 
end of the trial in order to keep them engaged for the 
whole trial duration.

Each AM and mental arithmetic trial lasted 17.6 s. The 
inter-trial interval was a fixation cross with a duration of 
either 2.2 or 4.4 s (in order to be a multiple TRvol), which 
was randomly determined. Each run consisted of 44 tri-
als. Unique cue words and arithmetic operations were 
presented during each run.

A brief training was undergone by each participant 
prior to the experiment as well as a post-experiment 
interview to ensure that participants understood the 
instructions well, and deemed the task’s difficulty man-
ageable. On average, participants took 3.99 s ± 1.78 s to 
find an autobiographical memory, and 3.19 s ± 1.72 s to 
resolve the arithmetic operations.

2.2.2.  Data processing

The first three volumes of all runs were disregarded to 
allow magnetization to reach a steady state. The remain-
ing, online reconstructed magnitude and phase images 
were used in an offline partial Fourier reconstruction utiliz-

ing the POCS algorithm (Haacke et al., 1991; Völker, n.d.). 
POCS-reconstructed magnitude data were subsequently 
processing with a custom pipeline based on Advanced 
Normalization Tools (ANTs) (Avants, Tustison, Wu, et  al., 
2011) (https://github​.com​/ANTsX​/ANTs). In short, both 
functional and reversed-phase encoded images of each 
run were subject to rigid-body correction, followed by a 
rigid alignment of the temporal mean of the functional and 
the reversed-phase encoded data. For distortion correc-
tion, an undistorted template image was calculated using 
the script antsMultivariateTemplateConstruction2 (Avants, 
Tustison, Song, et al., 2011) employing ANTs’ symmetric 
normalization (SyN) algorithm. The distortion-corrected 
template image of each run was subsequently rigidly reg-
istered to the anatomy using ITK-SNAP and the same 
masking principle as described in section  2.1.2.3. All 
transformations and distortion-correction warps were con-
catenated, and only one single resampling operation using 
Lanczos-windowed sinc interpolation was applied to the 
unprocessed functional data to minimize the resolution 
loss due to multiple interpolation steps.

After pre-processing, functional data were sampled as 
described in section 2.1.2.4 to obtain depth-dependent 
time courses. In addition to the procedure described 
above, we sought to reduce the venous bias in GRE-
BOLD laminar fMRI by masking out venous vessels. To 
this end, the projected SWI surface, filtered for venous 
vessels (see section 2.1.2.1 and Fig. 2B), was sampled 
and used as a venous mask. In particular, surface verti-
ces exhibiting a value below -3 a.u. were labeled as 
belonging to a vessel and disregarded.

2.2.3.  Data analysis

2.2.3.1.  Data model.  Functional data were analyzed in a 
two-step procedure using robust weighted least squares 
(Diedrichsen & Shadmehr, 2005) within the GLM frame-
work in SPM12. In a first pass, data were analyzed in 
voxel space. A single design matrix was used with three 
regressors of interest: The AM condition, split into con-
struction phase and elaboration phase, and the math 
condition. The six motion parameters were used as nui-
sance regressors, and the data were highpass filtered 
with a 1/(128 s) cutoff before fitting the model.

It is well known that physiological noise, that is, respi-
ration and heartbeat, is a major confounding factor in 
cortical areas near large vessels and ventricles (Krüger & 
Glover, 2001; Murphy et al., 2013) especially at ultrahigh 
fields (Triantafyllou et al., 2005). To account for the pro-
nounced physiological noise at the level of the hippo-
campus, we applied acompCor (Behzadi et  al., 2007). 
AcompCor (anatomical component based noise correc-
tion) estimates significant principal components from 

https://github.com/ANTsX/ANTs
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noise regions of interest (ROIs) which are used as nui-
sance regressors in the GLM. In particular, we used two 
regions of interest (ROIs). For one region, we created a 
mask of high residuals as given by the residuals map of 
the first GLM fit. A residual was classified as high if its 
value was larger than three times the SD of all residuals. 
This mask should reflect signal fluctuations associated 
with respiratory and cardiac cycles. A second ROI was 
manually drawn on the white matter of the brain stem 
close to the hippocampus. Care was taken to not include 
GM voxels of the hippocampus in any noise ROI. For the 
first ROI, the number of nuisance regressors was chosen 
such that 50 % of the variance was explained. For the 
second ROI, the number of components was fixed to 
five. In total, this resulted in approximately 11 to 14 addi-
tional acompCor regressors for each run. To increase the 
predictability of the model, the acompCor regressors 
were orthogonalized with respect to the motion regres-
sors. After obtaining the acompCor regressors, the model 
was re-fitted at the voxel level. An evaluation of this pro-
cedure can be found in the Supplementary Material (Sup-
plementary Fig. S5). Finally, two contrasts were generated, 
one as the difference between construction and elabora-
tion phase (labeled pre > post) and one as the difference 
between the average of the two AM phases and the con-
trol condition (labeled memory > math).

Prior to applying the same GLM model on depth-
dependent signals, the layer time courses were baseline 
z-transformed. That is, the z-transformation was per-
formed using the mean and the SD calculated from the 
volumes corresponding to the math condition.

2.2.3.2.  tSNR, Weisskoff test and physiological noise.  
Temporal SNR was calculated by dividing the temporal 
mean over the temporal SD where only the volumes cor-
responding to the math condition were included.

To investigate cortical depth-dependent physiological 
noise variations in the hippocampus, we performed a 
Weisskoff test in a depth-specific manner. The Weisskoff 
test (Weisskoff, 1996) was originally devised as a method 
to assess scanner stability. Originally, the test was per-
formed by continuously increasing the number of voxels 
in a spatial average before calculating the temporal SD. If 
the temporal noise is thermal, that is, of random nature, 
the noise should decrease with N , where N is the num-
ber of voxels used in the average. But, at some level of N, 
any additional voxel in the average does not lead to a 
noticeable reduction in the noise level. At this point, 
physiological noise, that is, structured noise, dominates 
the overall noise profile. On the laminar level, the Weiss-
koff test was used to estimate the minimum extend of an 
ROI that was needed to be in the physiological noise 

dominated regime (Koopmans et al., 2011; Markuerkiaga 
et al., 2021).

In this work, we averaged over hippocampal hemi-
spheres and performed the Weisskoff test for each sub-
ject, each subfield, and each depth separately. In 
particular, we selected profiles at random and varied the 
number of profiles included in the average from 1, that is, 
no averaging, to the maximum number of vertices within 
each subfield before calculating the temporal noise level 
(as defined by the temporal SD over time for volumes in 
the math condition). Finally, we averaged over subjects. 
This procedure helped us to investigate the laminar vari-
ation in physiological noise and to answer the question 
of whether our current laminar fMRI experiment is per-
formed in the physiological noise dominated regime.

2.2.4.  Statistical analysis

To confirm that the used autobiographical memory task 
elicits activation in the same areas as previously reported, 
we conducted a group-level GLM analysis on the mem-
ory > math contrast smoothed with a 2.7 mm Gaussian 
kernel and registered to MNI space. Permutation testing 
as implemented in the SnPM toolbox (Nichols & Holmes, 
2002) was used to control for the FWE rate. Specifically, 
29 permutations were used, and the variance of the model 
was smoothed with the same kernel as recommended by 
the developer of the toolbox for small sample sizes. The 
resulting pseudo t-statistic was thresholded at .05 signif-
icance level.

All group-level laminar statistical analyses were per-
formed in R (version 4.3.3) for both functional contrasts 
(memory > math and pre > post). To assess whether there 
is a significant main effect of layer, that is, whether the 
profiles resemble each other, we performed a linear 
mixed model comparison using the lme4 package for 
each subfield. We compared three models: A baseline 
model of the form z ~ (1|subject), where z is the baseline-
transformed z-value and subject is the random effect, a 
linear model (z ~ depth + (1|subject)), where depth is the 
cortical depth as the main effect, and a quadratic model 
(z ~ depth + depth2 + (1|subject)). In particular, we com-
pared the baseline with the linear model and the linear 
with the quadratic using an approximated F-test based 
on the Kenward-Roger approach for small sample sizes 
(Kenward & Roger, 1997). This was preferred over other 
methods, such as the Likelihood Test, as it has been 
shown to produce acceptable Type 1 Error Rate, particu-
larly for small sample sizes (Luke, 2017). Multiple com-
parisons were FDR-corrected using the Benjamini & 
Hochberg method (Benjamini & Hochberg, 1995).

Functional contrasts (memory  >  math vs. pre  >  post) 
were compared by performing an LME analysis for each 
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subfield (except CA4/DG) with depth, contrast and their 
interaction as main effects (z ~ depth + contrast + depth: 
contrast + (1|subject)) followed by a Type III analysis of vari-
ance with Kenward-Roger approximation for degrees of 
freedom and an FDR correction for multiple comparisons.

To test whether venous vessel masking had an effect on 
the comparison between cortical depths, we performed a 
similar analysis as described in the previous paragraph 
and modeled the response as z ~ depth  + masking + 
depth:masking + (1|subject) followed by testing for signifi-
cant main and interaction effects for each subfield.

2.3.  Data visualization

Results related to the breath-hold experiment (T2*, vessel 
density and breath-hold induced signal change) as well 
as results related to the autobiographical memory exper-
iment (tSNR) were mapped on the inner and outer sur-
face of the folded and unfolded hippocampus using 
modified code from the hippunfold toolbox (https://github​
.com​/jordandekraker​/hippunfold​_toolbox). In addition to 
the presented visualizations, surface maps and laminar 
profiles can be interactively explored in our online app 
(https://viktor​-pfaffenrot​.shinyapps​.io​/hippocampus​
_data​_viewer/).

3.  RESULTS

3.1.  Venous bias in hippocampal laminar fMRI

To better understand the venous drainage pattern in lami-
nar fMRI of the human hippocampus (Fig. 2A), we mapped 
the hippocampal vascular anatomy using high-resolution 
SWI and TOF angiography. By applying filter techniques 
(Frangi et al., 1998) (Fig. 2B) followed by mapping on the 
folded (Fig. 2C, D) and unfolded (Fig. 2E) surface repre
sentation of the hippocampus (see Fig. 1), we obtained a 
distinct vascular pattern. Figure 2C, D shows the subject-
averaged vascular distribution of large vessels at the inner 
(Fig. 2C) and outer (Fig. 2D) surface (veins and arteries in 
blue and red, respectively). The outer surface putatively 
corresponds to St. oriens and parts of St. pyramidale clos-
est to St. oriens. The inner surface putatively corresponds 
to the transition between St. radiatum and parts of St. pyra-
midale closest to St. radiatum. Figure 2E shows the same 
data plotted on the unfolded hippocampal surfaces (red 
arrows indicate exemplary points where E shows the same 
data as C and D). Comparing between surfaces, Figure 2C 
and E show an increased venous vessel density at the inner 
surface of subiculum and CA1. Both regions show lower 
densities of large veins at the outer surface (D). In contrast, 
regions CA2-CA3 (Fig. 2D) exhibit a higher venous density 
at the outer surface compared to the inner surface. These 

results appear consistent with the schematic drawings 
depicted in the Duvernoy atlas (Fig. 2A).

We performed a breath-holding experiment to investi-
gate how these subfield-specific vascular differences 
translate into biases in the laminar fMRI responses. 
Because the signal change during breath-holding is com-
pletely driven by vascular density distribution (rather than 
a cognitive task), the signal change distribution should 
provide information on the expected venous bias. Fig-
ure 2F shows unfolded surface maps of the breath-hold 
induced, subject- and echo-averaged signal change with 
vascular weighting, respectively. In the echo average, the 
vascular weighting penalizes signals acquired at longer 
echo times which are more contaminated by B0-related 
artifacts not showing any vascular origin (see section 2.1.3 
for details). The maps of signal change largely resemble 
the pattern seen in the venous vessel density distribution, 
that is, a high signal change at the inner layer of subicu-
lum and CA1 compared to the outer layer and the reverse 
pattern, although lower in magnitude, for CA2-4.

To quantitatively link venous vessel density ρ to vascu-
lar bias, we first statistically compared the differences in 
vessel density between inner and outer surfaces for each 
subfield. Figure 2G shows ρ obtained by aggregating the 
vertices as shown in Figure 2E for each subfield. A lighter 
color represents the inner, a darker color the outer surface, 
respectively. The venous vessel density is significantly 
higher at the inner surface for subiculum and CA1 (Wil-
coxon signed-rank test W = 36, pup = .031). In case of CA3, 
the density is significantly higher at the outer surface 
(W = 1, pup = .047). CA4/DG shows a trend after multiple 
comparisons correction (W =3, pup  =  .078). Figure  2H 
shows laminar profiles of the subject- and echo-averaged 
signal change during the breath-hold experiment with 
vascular-weighting. Single-subject and subject-averaged 
multi-echo laminar profiles can be found in Supplementary 
Figure S6. Shaded areas correspond to the SEM across 
subjects. The profiles show a strong positive slope from 
the outer toward the inner surface for subiculum (blue pro-
file, Wilcoxon signed-rank test W = 0, pup = .023) and CA1 
(orange profile, W = 0, pup = .023). The slopes of CA2 and 
CA3 (green and red profiles) do not show a trend in either 
direction (pup = .945 for both subfields).The DG exhibits a 
stronger signal change compared to CA4. Figure 2I shows 
the slope of the signal change (corresponding to Fig. 2H) 
as a function of vessel density difference Δρ computed 
from Figure  2G. We conducted a comparison of LME 
analyses using an approximated F-test (see section 2.2.4). 
The test revealed a significant effect of vessel density dif-
ference (Kenward-Roger approximated F-test, F(1,33.5) = 
5.28, p = .028, marginal R2 = 0.18, conditional R2 = 0.48). 
The estimated model, plotted as a black line in Figure 2I 
(shaded area is the model’s SE), indicates a positive 

https://github.com/jordandekraker/hippunfold_toolbox
https://github.com/jordandekraker/hippunfold_toolbox
https://viktor-pfaffenrot.shinyapps.io/hippocampus_data_viewer/
https://viktor-pfaffenrot.shinyapps.io/hippocampus_data_viewer/
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relationship between the slope of the breath-hold induced 
signal change, that is, the venous bias, and the vessel 
density.

In summary, these results show subfield- and layer-
dependent differences in venous vasculature and in 
breath-hold induced signal changes as a measure of 
physiological bias. They are strongly related and shed 
light on the venous drainage pattern and how it affects 
laminar fMRI of the human hippocampus. In particular, 
subiculum and CA1 show very prominent layer differ-
ences in venous drainage, both exhibiting a strong bias 
from outer to inner layers. CA3 exhibits a bias in the 
opposite direction, although smaller in magnitude. Layer 
differences in CA2 and between DG and CA4 appeared 
less pronounced and did not reach significance after cor-
rection for multiple comparisons.

3.2.  Laminar distribution of autobiographical 
memory effects

Next, we sought to establish a benchmark laminar fMRI 
experiment of the human hippocampus utilizing the 

most-widely used contrast and sequence for laminar 
fMRI: GRE-BOLD 3D EPI. To this end, inspired by the 
results of Leelaarporn et  al. (2024), we performed an 
autobiographical memory experiment (see section 
2.2.1.1) with the same participants as in the breath-
holding experiment.

To verify that the AM experiment elicited similar activa-
tion patterns as previously described (Leelaarporn et al., 
2024), we performed a non-parametric group-level anal-
ysis at the voxel level (Supplementary Fig. S7) showing 
activations at the expected locations (primarily anterior 
body of the hippocampus).

Figure 3 shows the cortical depth-dependent profiles 
for the baseline z-transformed and venous vessel masked 
memory  >  math contrast for all subjects and subfields 
along with the subject average (shaded area correspond 
to SEM). CA4 and DG again were not subdivided into lay-
ers. For all remaining subfields, we tested for significant 
linear and quadratic main effect of depth by performing 
an approximated F-test with Kenward-Roger approxima-
tion for degrees of freedom and restricted maximum 
likelihood (for details, see section 2.2.4 and Luke, 2017). 

Fig. 3.  Laminar fMRI profiles of autobiographical memory. (A-E) Laminar fMRI responses for all subfields during the 
memory > math contrast. Subject-averaged profiles are shown as black overlays (shaded area corresponds to SEM). 
The vascular-weighted signal change during breath-hold is plotted as a dashed line. In case of CA4 and the DG, only two 
bins were defined since layers are less clearly defined. (F) LME model comparisons using approximated F-tests show a 
significant effect of depth for all subfields (*** pFDR < .001). Here, ‘layer quad. model’ and ‘layer2 quad. model’ refer to the 
linear and quadratic term in the 2nd-order LME model, respectively. In CA1 and CA3, a quadratic model fitted the data 
significantly better than a linear model (** pFDR < .01, *** pFDR < .001). Note that the peak at inner layers of CA1 (B) cannot be 
explained by a venous bias as this would predict a monotonic increase toward St. lacunosum-moleculare (dashed line).
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Figure 3F shows the fitting coefficients obtained (error-
bars indicate SE of the coefficient). The asterisk indi-
cates whether a higher-order model describes the data 
statistically better than a lower-order model. The LME-
based analysis revealed a significant linear effect of 
depth in all subfields (F (1,260)> 76, pFDR < .001). A qua-
dratic model fitted the data significantly better than a 
linear model for the subfields CA1 (F(1,259)  =  76, 
pFDR = 1.5e-15) and CA3 (F(1,178) = 9.4, pFDR = .006). In 
case of CA3, the quadratic model suggests a higher 
response In middle layers which can be tentatively inter-
preted as autobiographical memory being predomi-
nantly driven by recurrent collateral inputs to CA3, 
terminating at proximal apical dendrites, rather than EC 
inputs to apical distal dendrites or DG inputs to periso-
matic layers. CA1 exhibits a prominent peak at inner 
layers which suggests a dominant input from the trisyn-
aptic pathway, that is, from CA3, rather than from EC 
inputs to distal apical dendrites. Obviously, this inter-
pretation should be considered with caution since we 
could not directly identify anatomical layers and since 
these anatomical layers show pronounced physiological 
differences (see section 4). It is worth noting though that 

the peak at inner layers of CA1 cannot be explained by 
the venous bias as our hyperemia experiment would 
predict a monotonic increase toward St. lacunosum-
moleculare (dashed line in Fig.  3B) which is absent in 
the functional profiles.

As autobiographical memory recall exhibits a temporal 
dynamic (Daviddi et al., 2023), we investigated whether 
possible laminar differences between memory construc-
tion versus memory elaboration exist. Figure 4 shows the 
laminar profiles of this contrast (pre > post). Again, LME 
analysis showed a highly significant linear main effect of 
depth (F(1,260) > 104, pFDR < .001). In case of CA3, LME 
analysis showed a significant quadratic effect of depth 
(F(1,178)  =  37, pFDR  =  3e-8), suggesting that recurrent 
connections within CA3 play a more important role during 
memory construction than elaboration.

We compared the two functional contrasts (mem-
ory > math vs. pre > post) by performing an LME analysis 
for each subfield (except CA4/DG) with depth, contrast, 
and their interaction as main effects (see section 2.2.4 for 
details). All subfields show a significant difference 
between contrasts (F(1,528) > 18, pFDR < .001 for all sub-
fields) and a significant interaction between depth and 

Fig. 4.  Laminar fMRI profiles of construction vs. elaboration phases. (A-E) Laminar fMRI responses for all subfields 
during the pre > post contrast. Subject-averaged profiles are shown as black overlays (shaded area corresponds to 
SEM). The vascular-weighted signal change during breath-hold is plotted as a dashed line. (F) LME comparisons using 
approximated F-tests show a significant effect of depth for all subfields (*** pFDR < .001). In CA3, a quadratic model fitted 
the data significantly better than the linear model. The profiles in CA1 (B) show a significantly different shape compared to 
the memory > math contrast (Fig. 3B).
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contrast (F(1,528) > 4, pFDR <  .05 for all subfields). The 
strongest effects of contrast and interaction are seen  
for CA1 (F(1,528)  =  101, pFDR  =  3e-21 for contrast, 
F(1,528) = 20.5, pFDR = 3e-5 for the interaction) where the 
laminar profiles in Figure 4B do not exhibit a peak at inner 
layers as shown in Figure 3B but rather a maximum in 
mid to outer layers. Importantly, this indicates that lami-
nar profiles depend on the exact task demands (i.e., con-
trasts) rather than reflecting unspecific differences of 
apparent overall recruitment that may be confounded by 
vascular (or other) factors.

In summary, these results show that we can obtain 
consistent laminar fMRI responses from all subfields of 
the human hippocampus using GRE-BOLD. Specifically, 
the subiculum shows, on average, the strongest BOLD 
activity in the memory  >  math condition, in line with 
Leelaarporn et al. (2024). Furthermore, CA1 shows lami-
nar responses that differ strongly between contrasts and 
are not explainable by a venous bias alone. These results 
can serve as a benchmark for future laminar fMRI studies 
of the human hippocampus at UHF.

3.2.1.  Effects of venous masking

We were interested in whether using a mask of venous 
vessels as obtained from the SWI image (see sec-
tion 3.1) would significantly reduce the venous bias in 
high-resolution GRE-BOLD fMRI. Figure 5 displays the 

difference between laminar profiles without and with 
venous masking for both contrasts. To assess whether 
venous masking has an effect on the laminar profiles, 
we performed an LME analysis similar to that used in the 
previous section (see section  2.2.4). For the mem-
ory > math contrast (Fig. 5A), LME analysis revealed a 
significant main effect of masking only for the subiculum 
(F(1,366) = 9.76, pFDR = .005). The effect is the strongest 
at the inner surface as predicted by the hyperemia 
experiment (Fig. 2H). In case of the pre > post contrast 
(Fig. 5B), masking had a weak effect on CA2 (F(1,528) = 
5.47, pFDR = .049). CA3 showed a significant interaction 
between depth and masking (F(1,366) = 9.05, pFDR = .007) 
but no main effect of masking (F(1,366)  =  4.36, 
pFDR = .06).

In summary, these results indicate that vein masking 
has a noticeable effect on the subiculum which is shown 
to be most affected by the venous bias. Furthermore, 
venous masking has a stronger effect during the mem-
ory > math contrast compared to the pre > post contrast.

3.3.  MRI metrics

In addition to the laminar fMRI results, the experiments 
performed in this study allowed us to obtain novel insights 
into depth-dependent MRI metrics of the human hippo-
campus relevant for the design and evaluation of other 
methods than GRE-BOLD.

Fig. 5.  Effect of vein masking. (A) Difference in functional contrast (memory > math) when performing vein masking. Only 
the subiculum shows a statistically significant effect of masking and the effect is the strongest at the inner surface where 
the bias is the strongest (see Fig. 2H). (B) Same as in A but for pre > post. CA2 shows a weak effect of masking (p = .049), 
and CA3 shows a significant interaction between depth and masking but no main effect of masking.
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3.3.1.  T2*

By fitting a mono-exponential decay function to the multi-
echo data during normocapnia (sections 3.1, 2.1.3), we 
were able to obtain baseline T2* relaxation times for each 
subfield as a function of cortical depth. Figure  6A-D 
shows the fitted T2* on the unfolded inner (Fig. 6A) and 
outer (Fig. 6B) surface as well as on the folded outer sur-
face (Fig. 6C). Aggregating vertices results in the depth-
dependent plots shown in Figure  6D. Interestingly, the 
subiculum exhibits a comparably short T2* relative to the 
remaining subfields. This can be explained by a high 
myelin content in the subiculum as noted with histology 
(Ding & Van Hoesen, 2015).

The outer surface as shown in Figure 6B,C exhibits a 
noteworthy area of long T2* at the demarcation between 
CA1 and CA2. One possible cause for this could be a 
partial voluming effect with CSF in the proximity of the 
hippocampus (cf. Supplementary Fig. S4).

3.3.2.  tSNR

As a measure of overall signal stability, temporal SNR is 
often reported. In this study, we obtained tSNR on the 

voxel-level (tSNR of two subjects scanned twice on differ-
ent days shown in Supplementary Fig. S8) and as a func-
tion of cortical depth by calculating the temporal mean 
and standard deviation over volumes corresponding to 
the control condition of the AM experiment. In Figure 6E-
G, the tSNR is shown as a projection on the unfolded inner 
and outer hippocampal surface, as well as the folded 
outer surface. Here, no masking for venous vessels was 
performed. The same structure of long T2* is now seen as 
high tSNR at the demarcation between CA1 and CA2, 
resulting in an overall high tSNR at the outer surface of 
CA1 as shown in Figure 6H. This result supports the notion 
that partial voluming with CSF is the most likely cause.

Masking venous vessels (Fig.  6I-L) led to an overall 
reduction in tSNR as the masking process also excluded 
GM vertices which are partial voluming with veins. How-
ever, when averaging over vertices to obtain layer profiles 
(Fig. 6L), the reduction in tSNR is negligible (i.e., compar-
ing Fig. 6H with 6L).

3.3.3.  Physiological noise

An important question to answer is whether the noise in 
the laminar profiles is dominated by physiological noise, 

Fig. 6.  MRI metrics. T2* relaxation time obtained during the breath-hold experiment and projected onto the unfolded 
hippocampal inner (A) and outer (B) surface. (C) Same as in (B) but shown on the folded hippocampal surface. The 
structure of long T2* at the demarcation between CA1 an CA2 is likely due to partial voluming with CSF. (D) Laminar profiles 
of T2* for all subfields. The subiculum exhibits a comparably short T2* relative to the remaining subfields. (E-F) tSNR maps 
obtained during the AM experiment without venous vessel masking projected onto the unfolded hippocampal surfaces. (G) 
Same as in F but shown on the folded hippocampus. (H) Laminar profiles of tSNR. The high tSNR at the outer layer of CA1 
can be explained by partial voluming with CSF. (I-J) Same plot as shown in E-H but for the case of venous vessel masking. 
Although an overall reduction of tSNR is present, this reduction is negligible when averaging over vertices (L).
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that is, whether averaging does not further improve the 
tSNR (Krüger & Glover, 2001). To investigate the laminar 
noise characteristics, we performed a Weisskoff test for 
each subfield (Weisskoff, 1996) (see section 2.2.3.2). Fig-
ure 7A-E shows the subject-averaged temporal noise as 
a function of cortical depth and amount of averaged ver-
tices ( N ). For all subfields, the noise does not vary con-
siderably with averaging when approaching the maximum 
number of available vertices. In particular, the physiolog-
ical noise regime is reached when approximately 2300, 
5700, 1100, 1300, and 3400 vertices are averaged for the 
subiculum and CA1-4, respectively. The number of verti-
ces is well below the total number of vertices available for 
averaging (for both hemispheres together: 3324, 7139, 
1401, 1979, and 4257 for the subiculum and CA1-4), 
highlighting that in our current experimental setup, we 
can safely assume to be in the physiological noise-
dominated regime.

The noise profiles in the physiological noise regime 
(Fig.  7F) exhibit a subfield-specific laminar structure. 
Koopmans et  al. (2011) argued that the physiological 
noise profiles follow the vascular density and hence give 
estimates of blood volume (Guidi et al., 2020). We also 
sampled an image of an India Ink stain (Supplementary 

Fig. S9C, adapted from Duvernoy et al., 2013), to com-
pare profiles of the vascular density with the obtained 
physiological noise profiles. Results can be found in the 
Supplementary Material (Supplementary Fig. S9).

4.  DISCUSSION

In this study, we show that is it possible to image the 
human hippocampus at a precision high enough to 
robustly sample BOLD responses and other physiologi-
cal and MR-related parameters as a function of cortical 
depth in each individual hippocampal subfield. Based on 
our findings, we derive the following recommendations, 
discussed in turn below:

	 1.	 Venous bias in high-resolution fMRI and signal 
interpretation:
•	 GRE-BOLD signal changes in inner layers of 

CA1 and subiculum should be interpreted with 
caution as they may be amplified due to blood 
draining from outer to inner layers, that is, the 
signal change at inner layers of CA1 and subic-
ulum may stem from effects unrelated to the 
experimental task.

Fig. 7.  Weisskoff test and physiological noise. (A-E) Subject-averaged temporal SD as a function of cortical depth and 
the amount of averaged vertices for all subfields. When approaching the maximum number of available vertices, the noise 
does not decrease considerably with averaging showing that the remaining patterns stem from physiological noise. (F) 
Noise profiles in the physiological noise-dominated regime, that is, taking the profiles when all vertices were averaged 
(colored lines in A-E).



16

V. Pfaffenrot, A. Bouyeure, C.A. Gomes et al.	 Imaging Neuroscience, Volume 3, 2025

•	 For CA1: Compare experimental effects against 
vascular bias baseline—strong effects different 
from the here reported bias patterns may indi-
cate true neural activity.

•	 For subiculum: Exercise particular caution in 
interpreting inner layer activity due to strong 
vascular bias.

•	 Consider experimental designs which modulate 
the strength of different hippocampal inputs 
rather than contrasting ‘task’ vs ‘rest’ condition 
to allow for additional control.

	 2.	 Reduction Attempts:
•	 Consider including a short, high-resolution SWI 

scan to map large venous vessels for each  
subject.

•	 Use the map of venous vessels to reduce 
venous bias, in particular for the subiculum.

	 3.	 Analysis Strategies:
•	 Account for the complex and variable anatomy 

of hippocampal subfields in the analysis pipe-
lines by using manual segmentation of sub-
fields or highly reliable automatic segmentation 
tools (e.g., HippUnfold).

•	 Correct for physiological noise, especially when 
imaging at ultra-high fields.

The results of the breath-hold experiment indicate 
that among all subfields, the subiculum, closely fol-
lowed by CA1, has the strongest venous bias, blurring 
activity toward inner layers (Fig.  2H). By mapping 
venous vasculature (Fig. 2A-G), we could show that the 
bias is driven by a heterogenous distribution of large 
venous vessels across layers of the hippocampus. This 
result was to be expected: The most-widely used GRE-
BOLD contrast exhibits a high sensitivity toward brain 
activity-induced signal changes. However, its sensitivity 
stems from magnetic field effects around small and 
large venous vessels. While a sensitivity toward the 
small vessels (i.e., capillaries) is desirable due to their 
proximity to the neuronal source of activity, large venous 
vessels drain blood out of the parenchyma and blur 
local activity over a large spatial scale. In other words, 
the GRE-BOLD contrast scales with vessel size (Ogawa 
et al., 1993) and follows the underlying vascular archi-
tecture (Havlicek & Uludağ, 2020; Uludağ et al., 2009). 
Considering hippocampus-specific features, a recent 
study by Haast et  al. (2024) additionally showed that  
the subiculum is proximal to arterial macrovessels. 
Therefore, we advise interpreting strong laminar fMRI 
responses in inner layers of the subiculum, but also 
CA1, with caution.

The anatomical location of the hippocampus renders it 
prone to artifacts associated with B

0-inhomogeneity. 
Although the acquisition of phase stabilization echoes 
strongly improved image quality and stability (Supple-
mentary Fig.  S2), performing a breath-hold experiment 
by itself inevitably amplifies B0-inhomogeneity, especially 
at longer TE. We tried to reduce these artifacts by down-
weighting longer echoes prior to echo averaging. In this 
regard, attempts to reduce venous bias by performing a 
breath-hold calibration scan at typical echo times when 
using an EPI readout might be less successful in the hip-
pocampus compared to the neocortex (Cohen et  al., 
2004; Eun et al., 2022).

By acquiring 3D-EPI images at 0.9 mm isotropic reso-
lution, we could obtain GRE-BOLD responses as a func-
tion of cortical depth during an autobiographical memory 
paradigm (Figs. 3 and 4). Comparing these results with 
those of the hyperemia experiment (Fig. 2), CA1 shows a 
clearly different behavior than what would be predicted 
by a venous bias alone. If the venous vasculature distri-
bution was the sole driver of these effects, a peak in St. 
lacunosum-moleculare of CA1 would be expected in 
both contrasts (dashed orange line in Figs.  3B and 
Fig. 4B). However, this is not what we see. In the mem-
ory > math contrast (Fig. 3B), the activity increases from 
outer to inner layers and peaks at the inner layer (around 
the putative transition between St. pyramidale and St. 
radiatum) before leveling off when approaching the most 
inner layers, St. lacunosum-moleculare. This peak sug-
gests a predominant relevance of inputs via the trisynap-
tic pathway, that is, from CA3, rather than of direct EC 
inputs during autobiographical memory retrieval. In the 
pre > post contrast, the profiles of CA1 (Fig. 4B) show a 
significantly different behavior compared to the mem-
ory > math contrast. Here, no difference between con-
struction and elaboration phase exists in the innermost 
layers (putatively St. lacunosum-moleculare). Instead, the 
contrast increases from inner to outer layers, suggesting 
that trisynaptic path inputs from CA3 are more relevant 
during memory construction than elaboration.

Laminar differences of hippocampal BOLD responses 
may depend on multiple different factors, which should 
be disentangled in the future, and the current results can 
serve as a baseline the community can refer to. Some 
factors to consider would be differences between the 
laminar distribution of “inputs”, that is, synaptic inputs 
(which may arrive at all layers) versus “outputs”, that is, 
action potentials (which are generated perisomatically, 
i.e., St. pyramidale) or differences between different types 
of synaptic inputs (largely entorhinal inputs vs. perforant 
path inputs). These could be tested via functional con-
nectivity analyses, for example, via PPI (Sharoh et  al., 
2019). In addition, differences in laminar distribution of 
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inhibitory interneurons might also play a role. The latter 
could be tested pharmacologically by combining laminar 
fMRI with an intervention such as application of benzodi-
azepines (which are GABA-A receptor agonists) or by 
studying epilepsy patients with altered function in spe-
cific populations of interneurons.

Accompanying the laminar fMRI results (a supple-
mantary laminar fMRI analysis along the longitudinal axis 
of the hippocampus can be found in Supplementary Fig-
ure S10), our study also provides insights into MRI and 
physiological parameters at the mesoscale. Our T2* pro-
files are in line with previous reported T2* values obtained 
at a lower spatial resolution at 7 T (Cho et al., 2010), and 
the ability to obtain depth-dependent profiles adds a new 
dimension to investigate MRI parameter differences 
between healthy controls and patients (Cho et al., 2010). 
From an fMRI acquisition perspective, our results can 
help to guide researchers in selecting echo times optimal 
for their specific study. In particular, Figure 6D shows that 
a longer TE than used in this study would be theoretically 
more optimal in terms of maximizing BOLD sensitivity. 
However, the breath-hold results indicate what artifact 
level can be expected at longer TE. Because we could 
obtain robust BOLD responses at a TE of 22  ms, we 
advise scanning at a shorter than theoretically optimal TE 
to improve temporal efficiency and signal stability.

The obtained tSNR maps (Fig.  6, Supplementary 
Fig. S8) and profiles indicate that we could obtain robust 
laminar fMRI responses using 3D-EPI. Excluding vertices 
shown to be likely co-located with veins reduced tSNR 
but the effect masking has on the tSNR of aggregated 
laminar profiles is negligible and it reduces signal changes 
at surfaces known to be prone to venous bias (Fig. 5). 
However, it must be noted that the measures to reduce 
venous bias used in this study can only serve as a 1st-
order correction as the BOLD effect of large veins affects 
all depths of the parenchyma (Bause et  al., 2020; 
Viessmann et  al., 2019) and the convolutional effect of 
draining veins (Markuerkiaga et  al., 2016) cannot be 
accounted for with masking. Hence, other fMRI contrasts 
like SE-BOLD (Beckett et al., 2020) or non-BOLD alterna-
tives like VASO (Faes et  al., 2023; Huber et  al., 2014, 
2024) are needed to be developed further to obtain lami-
nar fMRI responses with an as low as possible effect of 
large vessels and our results can serve as a benchmark 
to compare these contrasts to. Alternatively, other post-
processing methods like phase regression (Stanley et al., 
2021) could also be employed to reduce venous bias 
although we were not able to reliably reduce effects of 
large veins using phase regression, most likely due to dif-
ferences in SNR between the hippocampus and the neo-
cortex where this method has previously been used (data 
not shown). In addition to the methods mentioned here, 

the design of the neuroscientific experiment can also 
help to reduce effects of blood drainage (Olman et  al., 
2012). In this study, we contrasted two phases that puta-
tively both involve the hippocampus (construction versus 
elaboration phase). Alternatively, modulating the strength 
of different hippocampal inputs, similar to work per-
formed in sensory areas (Lawrence et al., 2019), might be 
a possibility to control the vascular bias in GRE-BOLD.

The noise curves in Figure 7 all reach a plateau, show-
ing that when aggregating over vertices, physiological 
noise is the dominant noise source. This is in line with 
previous studies (Koopmans et al., 2011; Markuerkiaga 
et  al., 2021), indicating that the effect of thermal noise 
can be neglected. However, given the hippocampus’ 
susceptibility to signal fluctuations driven by physiology, 
some measures of noise reduction need to be applied to 
increase data reproducibility, especially in inferior brain 
regions. We demonstrated this by assessing model resid-
uals before and after using acompCor (Supplementary 
Fig.  S5) showing that modeling physiological noise 
sources in the GLM is advisable as it increases the mod-
el’s predictability. Future work could include a more sys-
tematic evaluation of acompCor and other methods, for 
example, RETROICOR (Glover et  al., 2000). Our own 
attempts (Pfaffenrot et al., 2024) to compare acompCor 
and RETROICOR show a superior performance of acom-
pCor, possibly due to a more robust estimation of physi-
ological noise sources when using acompCor.

In this study, we used the default canonical HRF from 
SPM12. It has been shown that subcortical areas exhibit 
different HRF nonlinearities compared to the neocortex 
(Lewis et al., 2018) and that for the neocortex, the HRF is 
not constant along the cortical depth (Dresbach et  al., 
2023; Puckett et  al., 2016) but exhibits a higher BOLD 
response at superficial layers and a longer tail compared 
to deep layers. In future work, a hippocampus- and 
depth-specific HRF could be mapped analogous to the 
study of Dresbach et  al. (2023) to further characterize 
the BOLD response of the human hippocampus along 
the temporal dimension.

An estimate of the subject-averaged cortical thickness 
for each subfield as shown in Supplementary Table ST1 
indicates that while an isotropic spatial resolution of 
0.9  mm is sufficient to separate signals from the inner 
layers (i.e., St. lacunosum-moleculare) and outer layers 
(i.e., St. pyramidale), resolving more depths without sig-
nificant partial voluming requires a higher spatial resolu-
tion. This, in turn, needs to be traded for temporal 
resolution, spatial coverage, or SNR.

In conclusion, sampling BOLD responses as a function 
of cortical depth makes investigation of the underlying 
functional microcircuits of the human hippocampus possi-
ble, and has potential for non-invasively investigating the 
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directionality of the projections to and from other brain 
regions. Here, we present relevant insights on the vascular 
bias of laminar fMRI of the human hippocampus which will 
help the community to interpret hippocampal responses 
when utilizing the most widely used fMRI contrast, GRE-
BOLD. Finally, the presented AM results and methods will 
help researchers to test new hypotheses on a laminar level 
and to validate other fMRI contrasts to improve the speci-
ficity of laminar fMRI of the human hippocampus.
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