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SUMMARY
Goal-directed navigation relies on both coarse and fine-grained coding of spatial distance between the cur-
rent position of a navigating subject and a goal destination. However, the neural signatures underlying goal
distance coding remain poorly understood. Using intracranial EEG recordings from the hippocampus of
drug-resistant epilepsy patients who performed a virtual spatial navigation task, we found that the right hip-
pocampal theta power was significantly modulated by goal distance and decreased with goal proximity. This
modulation varied along the hippocampal longitudinal axis such that theta power in the posterior hippocam-
pus decreased more strongly with goal proximity. Similarly, neural timescale, reflecting the duration across
which information can bemaintained, increased gradually from the posterior to anterior hippocampus. Taken
together, this study provides empirical evidence for multi-scale spatial representations of goal distance in
the human hippocampus and links the hippocampal processing of spatial information to its intrinsic temporal
dynamics.
INTRODUCTION

Goal-directed navigation relies on multi-scale spatial coding of

the distance between the current position and a goal destina-

tion.1–3 Imagine the scenario that you are traveling to a destina-

tion through a subway network. To navigate efficiently, you need

not only to track gist information about the route (i.e., how often

do I need to transfer between lines?), but also more fine-grained

information (i.e., how many stations need to pass before trans-

fer?). Multi-scale goal coding allows for efficient reorganization

of spatial knowledge, is less susceptible to interference from

background noise than coding at a single scale, and may sup-

port flexible navigation in environments with different sizes.1,4–8

However, the neural signatures underlying multi-scale goal cod-

ing remain poorly understood, particularly in the human brain.

Both animal and human studies have demonstrated that the

hippocampus (HPC) plays fundamental roles in spatial goal cod-

ing.9–14 Functional magnetic resonance imaging (fMRI) studies

have found that the HPC supports the prospective simulation

of navigational events during planning15 and the hippocampal

activity also encodes the distances to spatial goals during move-

ment.9,11,16 Electrophysiological evidence has provided strong
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support that hippocampal theta oscillations are associated

with spatial navigation and episodic memory.17 In rodents,

temporally compressed activations of place cells within theta cy-

cles have been observed during movement, and some of these

cells represent trajectories ahead of the animal.18,19 This phe-

nomenon leads to the hypothesis that hippocampal theta oscil-

lations may have critical roles in calculating future paths to

remembered goals.20 Furthermore, human intracranial electro-

encephalography (iEEG) studies showed that hippocampal theta

oscillations is associated with distance processing.12,21 There-

fore, it is reasonable to ask whether hippocampal theta oscilla-

tions are involved in the representation of goal distance.

In addition, human behavior experiments have shown that hu-

man can successfully navigate in the nested spatial environment,

suggesting that our brains have a hierarchical representation of

space.15,22,23 The fMRI studies also found that the HPC-prefron-

tal cortex hierarchically processes spatial information.1,3 Rodent

studies showed that place field size increases gradually from

dorsal to ventral HPC (homologous to the human posterior-ante-

rior axis), putatively supporting a fine-to-coarse representation

of the environment.2,24,25 Theoretical modeling shows that a

fine-to-coarse representation is extremely effient; by employing
nc.
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Table 1. Demographic information

Recording site Patient ID Age (years) Sex R-HPC contacts L-HPC contacts R-Amyg contacts Good trials Bad trials

Beijing 1 25 M 0 4 0 77 14

Beijing 2 24 M 9 9 4 57 43

Beijing 3 23 M 7 0 5 32 83

Beijing 4 25 M 4 0 0 18 89

Beijing 5 31 F 4 5 4 21 60

Beijing 6 19 F 0 9 0 56 23

Freiburg 7 26 M 0 8 0 29 136

Beijing 8 27 M 0 9 0 44 65

Beijing 9 36 F 13 0 0 16 38

Freiburg 10 34 M 3 0 2 67 62

Beijing 11 24 M 4 2 4 26 70

Beijing 12 28 M 4 0 2 18 34

Beijing 13 32 M 0 6 0 16 20

Beijing 14 22 M 11 0 4 58 49

Beijing 15 19 F 0 10 0 20 44

M, male; F, female; R, right; L, left; HPC, hippocampus; Amyg, amygdala.
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neurons with different place field size, the overall spatial resolu-

tion scales exponentially with the number of neurons.8 To

achieve it, more cells with smaller place fields are needed than

cells with larger place field.5 We therefore hypothesized that

during goal tracking, the posterior HPC may recruit more cells,

resulting in a gradient in the representation of the HPC to goal

distance coding.

To track goal distances at a fined-grained scale, the relevant

brain areas must activate transiently to couple rapidly changing

external stimuli.26 In contrast, coding goal distances at a

coarse-grained scale, the relevant brain areas must activate

persistently to integrate more information.26,27 Thus the spatial

organization hierarchy for goal location processing needs to be

converted to the time domain.27,28 The temporal hierarchy can

be measured by the so-called neural timescale, which reflects

how long a local network can be persistently active29 and is

largely determined by intrinsic dynamic properties.27 We esti-

mated the neural timescale for each hippocampal contact

during the navigation task, and tested the hypothesis that

neural timescales exhibit gradients along the hippocampal

axis, attempting to link the hippocampal processing of spatial

information to its temporal dynamics and reveal the neural

computational mechanism of gradient representation of spatial

information.

To test these predictions, we examined intracranial recordings

of hippocampal activity in drug-resistant epilepsy patients who

performed an object-location memory task. We found that theta

power was significantly modulated by goal distance, with

decreasing power closer to the goal. Importantly, this modula-

tion changed gradually along the hippocampal longitudinal

axis, such that theta power in the posterior HPC decreased

more strongly with goal proximity. We furthermore found that

the neural timescales showed a similar gradual increase from

posterior to anterior HPC. Our results provided empirical evi-

dence for a fine-to-coarse representation of spatial-temporal in-

formation in human HPC.
RESULTS

Right hippocampal theta oscillations predict goal
distance
Participants performed a self-paced navigation task on the

laptop while intracranial EEG data were recorded (Table 1). In

this task, they first collected eight everyday objects placed in

different locations one after the other, then continuously per-

formed memory recall tests (Figure 1A). Participants freely navi-

gated to the remembered location of the cued object and indi-

cated this location with a button press. This was followed by

feedback (via smileys of different colors depending on accuracy)

and presentation of the target object at its correct location, from

where participants recollected the object. We characterized the

normalized power spectrum in all hippocampal contacts during

fast movement in the retrieval phases. We observed two peaks

centered around �2 and 7 Hz, respectively (Figure 2B), and

high theta power (6–9 Hz) during fast retrieval epochs (defined

as periods with exceeding the fastest tercile of all movement

speed during retrieval phases) were significantly higher

than average high theta power of all movement (t(120) = 2.331,

p = 0.021; Figure 2C), consistent with previous studies.21,30,31

We characterized the relationship between high theta power

and goal distance (defined as the Euclidean distance between

the instantaneous location and the true goal location) in the left

and right HPC, respectively, since previous studies proposed

that lateralized hippocampal oscillations might underlie distinct

aspects of human cognition, with right hippocampal theta oscil-

lations being more engaged in spatial navigation.31 In line with

our hypotheses, we found that right hippocampal theta power

was significantly modulated by goal distance (Figure 2D), with

theta power being higher when participants were further away

from the goal (Figures 2E and 2F). This modulation was behavior-

ally relevant, since it only existed in trials with good performance

(t(58) = 3.063, p = 0.003), but not in trials with bad performance

(t(58) = �0.983, p = 0.330). Theta power in right HPC was also
Current Biology 33, 2024–2033, May 22, 2023 2025
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Figure 1. Experimental paradigm and behavioral results

(A) Object location memory task.

(B) Drop error was defined as the Euclidean distance between the response location (yellow hexagon) and the actual object location (orange pentagram). Goal

distance was calculated as the instantaneous Euclidean distance between the current location (brown circle) and the correct object location. The blue curve is an

example of movement trajectory.

(C) Feedback to participants depended on drop error. We divided the trials into two categories: good trials (dark and light green smileys) and bad trials (yellow,

dark red, and light red expressions).

(D) Fraction of trials with different types of feedback, i.e., different drop errors (n = 15 participants).

(E) All start locations.

(F) All termination locations. The color represents the density, the darker the higher the density.

(G) Example trajectories: all trajectories to a particular goal in 3 subjects (different color) for good (solid lines and solid circles) and bad trials (dotted lines and

hollow circles). The pentagram marks the target location, while the circle marks the response location.

See also Figure S5.
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significantly modulated by subjective goal distance (i.e., the

Euclidean distance between the subject’s current location and

their response location) in good trials (t(58) = 2.018, p = 0.048;

Figure S1A), but not in bad trial (t(58) = �0.926, p = 0.358;

Figure S1A). As expected, the modulation of subjective goal
2026 Current Biology 33, 2024–2033, May 22, 2023
distance in the right HPC showed a significant correlation with

the modulation of objective goal distance (same as goal dis-

tance) in good trials (p < 0.001; Figure S1B). In contrast, we

did not observe an effect of goal distance on theta power in

the left HPC for either good trials (t(61) = �0.791, p = 0.432;
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Figure 2. Theta-based goal distance modulation in the right hippocampus

(A) All electrode contacts (gray circles) in the right hippocampus (blue), left hippocampus (pink), and right amygdala (purple).

(B) Power spectrum of the hippocampus showed a peak frequency between 6 and 9 Hz during fast movement periods of memory retrieval.

(C) Normalized theta power (6–9 Hz) during fast movement periods of memory retrieval was significantly higher than zero. The pink and blue dots refer to the

normalized theta power for left and right hippocampal contacts respectively.

(D) Significant correlation between right hippocampal theta power and goal distance in good trials, but not in bad trials and for non-target goals. Goal distance

refers to instantaneous Euclidean distance between the current location and the correct object location.

(E) Example contact in the right hippocampus showing a positive correlation between theta power and goal distance.

(F) Normalized right hippocampal theta power is depicted as a function of goal distance quartiles for each subject.

(G) Low theta (2–5 Hz), alpha/beta (10–16 Hz), gamma (30–100 Hz), and high gamma (70–150 Hz) power in the right hippocampus were not modulated by goal

distance.

(H and I) Goal distance modulation was not significant in the left hippocampus (H) and right amygdala (I). *p < 0.05, **p < 0.01. Yellow bars represent significant

frequency bins.

See also Figures S1–S3.
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Figure 2H) or bad trials (t(61) = �0.289, p = 0.774), and no effect

of subjective goal distance (t(61) = �0.841, p = 0.404; Fig-

ure S1A), although there was no difference in high theta power

between the left and right HPC (t(119) = �1.608, p = 0.111).

Weconducteda seriesof control analyses. To exclude thepos-

sibility that different goal distance modulation in good and bad

trials was attributed to differences in theta power, right hippo-

campal theta power of the two condition was compared and no
significant difference appeared (t(58) = �0.821, p = 0.415). To

ensure that theta activity was indeed modulated by the distance

to the actual target in a given trial, we correlated theta power

with the Euclidean distance to a randomly selected non-target

goal. Results showed that theta power was not modulated by

non-target distance (t(58) = �0.272, p = 0.786; Figure 2D). We

also repeated theanalysis of goal distance for contacts in the right

amygdala, close to the right HPC.Wedid not find an effect of goal
Current Biology 33, 2024–2033, May 22, 2023 2027
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Figure 3. A gradient of goal distance modulation along the hippocampal longitudinal axis

(A) Schematic depiction of hypothesized multi-scale goal distance representations along the hippocampal longitudinal axis. Previous electrophysiological re-

cordings showed gradually increasing place field sizes along the posterior-anterior axis (illustrated by the black arrow, top). While traveling to the goal, place cells

are organized by the theta oscillation (middle). Due to smaller place field sizes in the posterior hippocampal neurons, more cells are recruited during longer

trajectories, and stronger theta oscillations may be required to organize these place cells. Theta activities in the posterior hippocampus may thus change more

rapidly when a goal destination is approached (bottom).

(B) Goal distance modulation correlates with recording locations along the right hippocampal posterior-anterior axis (top). As examples (bottom), the goal

distance is plotted against theta power for the circled blue and pink dots marked at the top panel.

See also Figure S4.
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distance modulation in either good trials (t(24) = 0.281, p = 0.781;

Figure 2I) or bad trials (t(24) =�0.203, p= 0.841).Nogoal distance

modulation was observed in other frequency bands in the right

HPC (2–5 Hz: t(58) = 1.758, p = 0.084; 10–16 Hz: t(58) = 1.459,

p = 0.150; 30–100 Hz: t(58) = 1.026, p = 0.309; 70–150 Hz:

t(58) = 0.519, p = 0.606; Figure 2G). Given the fact that goal dis-

tance was related to traveled time (Figure S5), we furthermore re-

gressed the elapsed time with theta power, but did not find a sig-

nificant effect for either good trials (t(58) = 1.061, p = 0.293;

Figure S2D) or bad trials (t(58) = 1.380, p = 0.173). Both path dis-

tance to goal and Euclidean goal distance are vital variables in

goal-directed navigation.11 We thus correlated path distance to

goalwith thetapower, but did not finda significant effect for either

good trials (t(58) = 1.086, p = 0.282; Figure S2A) or bad trials

(t(58) = �0.289, p = 0.774). During navigation in the open arena,

sometimes the trajectory was not straight (e.g., the green curves

in Figure 1G), which can make the path distance be different

from the Euclidean distance to the goal. Finally, some research

suggested that the HPC is involved in egocentric direction cod-

ing.11,14 We thus used goal distance, egocentric direction, and

the interaction between goal distance and egocentric direction

as regressors in good trials. Theta power was not related to

egocentric direction (t(58) = 0.421, p = 0.675; Figure S3B) and

the interaction (t(58) = �0.995, p = 0.324).
2028 Current Biology 33, 2024–2033, May 22, 2023
Confounding factors such as boundary and speed
cannot explain the results of goal modulation
Previous studies have reported that theta oscillations in the

HPC are related to spatial variables such as boundaries and

speed.30,32,33 We analyzed the impact of these potential con-

founding factors. We thus correlated the boundary distance (dis-

tance between the subject’s current position and the boundary)

with theta power in good trials. The result showed that the mod-

ulation of high theta power (6–9 Hz) by the boundary was not sig-

nificant (t(58) = �0.697, p = 0.489; Figure S3A). However, we did

find that low theta power was modulated by the boundary; it

increased as subjects approached the boundary, consistent

with a previous study (t(58) = �2.182, p = 0.033; Figure S3A).32

Furthermore, after controlling for boundary distance, we found

that the high theta power was still significantly modulated by

the goal distance (t(58) = 2.550, p = 0.013). Intuitively, when

the goal was closer to the boundary, subjects may tend to use

it to extract location information for goal distance calculation.

Therefore, we examined the effect of distance between the

goal location and the boundary. We found that theta power

was still significantly modulated by the goal distance (t(58) =

2.229, p = 0.030), but not by the distance of the goal to the

boundary (t(58) = 1.689, p = 0.097). The two terms did not

show an interaction (t(58) = �0.992, p = 0.325).
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Figure 4. Temporal hierarchies increase gradually along the hippocampal longitudinal axis

(A) The concept of neural timescale and hypothesis. Neural timescale can be defined as the the decay speed of neural signals, reflecting the ability to integrate

information. Only when the interval between the two upstream signals is shorter than the timescale, the downstream network can integrate the two information.

We exhibit our hypothesis—the hippocampal axis may have a gradient of timescale.

(B) Two complementarymethods for computing temporal hierarchies from neural signals: broadband feature (neural timescale, i.e., t) and local peaks frompower

spectrum density, corresponding to aperiodic and periodic components.

(C) The relationship between neural timescale (or theta peak) and position along the hippocampal longitudinal axis. There is a significant gradient of t (top) and

theta peak (bottom) along the hippocampal anterior-posterior axis.
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In addition, we also considered possible influences of

speed and acceleration. First, we used the same method to

analyze the modulation of theta power with goal distance dur-

ing medium-speed and low-speed epochs, and the results

were not significant (low speed: t(58) = 1.068, p = 0.290; me-

dium speed: t(58) = 1.412, p = 0.163; Figure S3C). These re-

sults are similar to previous work, including ours, that is, in

virtual navigation, the processing of spatial information is

more pronounced in high-speed epochs, which may be

related to a stronger sense of involvement of the sub-

jects.34–36 We note that the instantaneous speed of partici-

pants was changing even in the high-speed movement

epochs. We thus added the instantaneous speed and the ac-

celeration/deceleration into the regression equation, respec-

tively. However, none of these potentially confounding factors

affected the modulation of the goal distance (speed: t(58) =

3.099, p = 0.003; acceleration: t(58) = 2.489, p = 0.016; decel-

eration: t(58) = 2.283, p = 0.026), and these covariates them-

selves were not significant (speed: t(58) = 1.343, p = 0.185;
acceleration: t(58) = �0.326, p = 0.746; deceleration: t(58) =

0.063, p = 0.950).

Effect of goal distance on theta power varies along the
longitudinal axis of the HPC
The size of rodent place fields increases gradually along the dor-

sal-to-ventral axis of the HPC (homologous to the human poste-

rior-anterior axis), reflecting a hierarchy of spatial representa-

tions.25 We hypothesized that goal distance coding may vary

gradually along the human hippocampal axis as well. We exam-

ined the relationship between goal distance modulation (i.e., b

values) and the y axis coordinates of the recording sites in the

HPC. As expected, goal distance modulation in good trials

showed a gradient along the right hippocampal longitudinal

axis: Theta power changed with goal distance more rapidly

(i.e., higher b values) in the posterior HPC and more slowly

(i.e., lower b values) in the anterior HPC, indicating a coarse-

to-fine coding of goal distance across multiple spatial scales

(t(57) = �2.160, p = 0.035; Figure 3B). When controlling for theta
Current Biology 33, 2024–2033, May 22, 2023 2029



ll
Article
power, the correlation between goal distance modulation and

position along the hippocampal longitudinal axis was still signif-

icant (t(56) = �2.230, p = 0.029). In contrast, the goal distance

modulation in bad trials did not show such a gradient (t(57) =

0.378, p = 0.707; Figure S4C), and no gradient was observed

along the longitudinal axis of the left hippocampal in either

good (t(60) = 0.076, p = 0.940; Figure S4A) or bad trials (t(60) =

�1.543, p = 0.128; Figure S4B).
Transfer of spatial hierarchy to temporal hierarchy
along the hippocampal longitudinal axis
Neural timescale can be defined as how long a local network can

be persistently active.26 This feature reflects the ability to inte-

grate information, and is determined by the area’s intrinsic dy-

namic properties.27 At the single neuron level, roughly speaking,

the magnitude of the neural timescale is similar to the membrane

time constant, which is the duration for neurons to return from

action potential to resting potential. If the interval between the

two spike signals A and B in the upstream is greater than this

duration, then the downstream neuron C cannot integrate the in-

formation, because the membrane potential pushed up by A has

returned to baseline before B arrives (Figure 4A). At the scale of

neural assemblies, the timescale can be measured from local

field potential (LFP) data.26,37 Above results showed that anterior

HPC tracked goal distances at a coarse-grained scale, suggest-

ing a role in integrating more information. We hypothesis that it

should have a larger timescale, occupying a higher temporal

hierarchy.

Here, we estimated the neural timescale with recent well-

development method, which concerns the non-periodic

component of LFP signal.26 In this way, neural timescale can

be calculated by the knee frequency in the broadband part of

the spectrum, using the formula t = 1;000
2pfknee

(Figure 4B). The result

showed a gradually increasing timescale from posterior to ante-

rior HPC (t(40) = 4.667, p < 0.001; Figure 4C upper part). The

correlation between t and goal distance modulation was nega-

tive as expected, although only marginally significant (t(40) =

�1.706, p = 0.096). Local peak of the spectrum, the periodic

component of the LFP signal, is another complementary mea-

sure to reflect temporal hierarchy. We speculated that the pos-

terior HPC shows higher frequency theta oscillations, thus

changing faster. Similarly, we found a gradually increasing

theta peak frequency along the longitudinal axis (t(38) =

�2.230, p = 0.032; Figure 4C lower part), consistent with the

previous study.30 The correlation between goal distance

modulation and theta peak frequency was not significant

(t(38) = 1.256, p = 0.217). These results indicate a transfer of

spatial hierarchy to temporal hierarchy along the hippocampal

longitudinal axis.
DISCUSSION

This study examined how the HPC dynamically encodes goal

distance during virtual navigation. We found that theta power

(6–9 Hz) in the right HPC was positively related to Euclidean

goal distance. Critically, goal distance modulation changed

gradually along the hippocampal longitudinal axis, with stronger

correlations between goal distance and theta power in posterior
2030 Current Biology 33, 2024–2033, May 22, 2023
than anterior HPC. We also found that neural timescales in pos-

terior HPC were faster than in anterior HPC. These results sug-

gest that the HPC exhibits spatiotemporal representations at

multiple scales, which may be critical to guide flexible and pre-

cise navigation to goal destinations.

Previous human fMRI studies yielded contradictory results

about hippocampal coding of goal distance. Some studies

showed increased hippocampal activities with goal distance,9,11

whereas others showed the reverse effect.1,38,39 It was sug-

gested that the influence of goal distances on hippocampal ac-

tivity depends on the size of navigational environments: in larger

spaces, hippocampal activity showed a positive correlation,11,40

while this effect reversed in smaller and more constrained envi-

ronments.1,38,39 A recent study reported that navigation phase

also plays a role. Specifically, HPC activity increased with goal

distance during travel, but decreased at decision points.11

Another study found that environmental complexity not only

affected navigational behavior but also modulated HPC activity,

with greater hippocampal activity in simpler environments.41 In

the current study, we found positive correlations between hippo-

campal theta power and goal distance. However, due to com-

plex relationships between theta power and fMRI BOLD signals

in the HPC,42,43 our results cannot be directly compared with the

fMRI studies mentioned above.

We found hippocampal theta power to be positively modu-

lated by goal distance. Consistent with our results, a rodent

study found that Cornu Ammonis 1 region (CA1) activity was

positively correlated with goal distance, which means CA1 activ-

ity decreases with proximity to the goal.44 Furthermore, the

stronger the correlation was, the better the behavioral perfor-

mance. This is also consistent with our findings since we only

found goal distance modulation of theta power in good trials.

We speculate that when more cells are recruited during longer

trajectories, more pronounced theta oscillationsmay be required

to organize these place cells, leading to a positive correlation be-

tween goal distance and theta power. Align with our speculation,

recent studies have shown that theta oscillations in the HPC

plays an extremely important role in organizing the sequential

discharge of place cells: the excitation-inhibition time window

created by theta can regulate spike timing of place cells.17,28,45

A recent study found that after injecting muscimol to perturb

the internal theta oscillation, it was the fire sequence but not

fire rate of place cell being affected.45 However future studies

are needed to exclude the possibility that the increased theta os-

cillations away from the goal is a side effect of more cells firing

synchronously.

The current study showed that Euclidean goal distances were

associated with theta power in the right HPC, but not in the left

HPC, providing evidence for a lateralization of hippocampal

functions. Consistent with our results, previous fMRI studies

found that only right hippocampal activity was modulated by

goal distance during traveling.9,11 In addition, a human intracra-

nial EEG study found different cognitive functions supported by

left and right HPC, showing that the left HPC was relevant for

successful memory encoding, while the right HPC was recruited

during spatial navigation.31 Lateralized functions in the HPC

were also associated with navigational strategies, with sequen-

tial egocentric representations in the left HPC and allocentric

representations in the right HPC.46 The current study involves
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navigation in an open maze, which may rely more on an allocen-

tric strategy and thus the right HPC.

Our results found that a posterior-to-anterior gradient of neural

timescales along the hippocampal axis. The longer neural time-

scale in the anterior HPC might underlying the neural mechanism

the distribution of rodent place field sizes. Neurons in anterior

HPC have greater neural timescales and could activate for a

longer period, thus show larger place fields when rodents cross

the environment. Furthermore, the gradient of neural timescales

might also underlie the goal distance coding. Neurons with

shorter timescales in the posterior HPC are more tightly coupled

to rapid changes in the external environment, consistent with our

finding that theta power in the right posterior HPC is coupledmore

tightly to goal distance. Combined with a series of previous

studies, these results suggest a coarse-to-fine representation

along the hippocampal longitudinal axis.2,3 However, recent ro-

dent study found that not only the fields of ventral (anterior equiv-

alent) hippocampal cells do extend, but also the stability and

spatial selectivity of the place cells decreased.47 This result im-

plies another account: gradient changes of spatial representation

from posterior to anterior HPC may reflect a reduction of spatial

coding, as opposed to a shift to large-scale coding. Future studies

are warranted to distinguish these two possibilities.

Neural representations of goal distance may differ between

open mazes without any obstacles and city environments with

many buildings. First, in structured city environments, one may

not calculate goal distance at every time point, for example,

when coasting along a pedestrian bridge.48,49 By contrast, in

open maze environments with only distal cues, calculating the

goal distance at every time point may be required to accurately

reach a goal. Second, it is worth noting that both path distance

and Euclidean goal distance are vital variables. The representa-

tion of path distance to a goal is critical for selecting optimal

routes and avoiding dead ends, whereas the representation of

Euclidean goal distances allows to select shortcuts. However,

detours only exist in structured (e.g., city) environments, but not

in open maze environments. Therefore, continuously tracking

Euclidean goal distance may be more critical in our task than

tracking path distance. A previous fMRI study on navigation in a

city environment found that the posterior HPC was sensitive to

the path distance to goals, while activity in anterior HPC was

correlated with the Euclidean distance to a goal.11 In the current

study with an open maze environment, we found hippocampal

theta power to be only correlated with Euclidean goal distance.

This controversy might result from the environment and task

demand.

Overall, by examining direct intracranial recordings of hippo-

campal activity, this study found that high theta power (6–9 Hz)

dynamically tracked goal distance and decreased when partici-

pants approached the goal. Critically, both goal distance modu-

lation and neural timescales consistently showed gradual

changes along the hippocampal longitudinal axis. These results

provide empirical evidence for a multi-scale spatiotemporal rep-

resentation in the human HPC.
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18. Dragoi, G., andBuzsáki, G. (2006). Temporal encoding of place sequences

by hippocampal cell assemblies. Neuron 50, 145–157.

19. Foster, D.J., and Wilson, M.A. (2007). Hippocampal theta sequences.

Hippocampus 17, 1093–1099.

20. Wikenheiser, A.M., and Redish, A.D. (2015). Hippocampal theta se-

quences reflect current goals. Nat. Neurosci. 18, 289–294.

21. Bush, D., Bisby, J.A., Bird, C.M., Gollwitzer, S., Rodionov, R., Diehl, B.,

McEvoy, A.W., Walker, M.C., and Burgess, N. (2017). Human hippocam-

pal theta power indicates movement onset and distance travelled. Proc.

Natl. Acad. Sci. USA 114, 12297–12302. https://doi.org/10.1073/pnas.

1708716114.

22. Wang, R.F., and Brockmole, J.R. (2003). Simultaneous spatial updating in

nested environments. Psychon. Bull. Rev. 10, 981–986. https://doi.org/10.

3758/BF03196562.

23. Wang, R.F., and Brockmole, J.R. (2003). Human navigation in nested en-

vironments. J. Exp. Psychol. Learn. Mem. Cogn. 29, 398–404. https://doi.

org/10.1037/0278-7393.29.3.398.

24. Kjelstrup, K.B., Solstad, T., Brun, V.H., Hafting, T., Leutgeb, S., Witter,

M.P., Moser, E.I., andMoser, M.-B. (2008). Finite scale of spatial represen-

tation in the hippocampus. Science 321, 140–143.
2032 Current Biology 33, 2024–2033, May 22, 2023
25. Strange, B.A., Witter, M.P., Lein, E.S., and Moser, E.I. (2014). Functional

organization of the hippocampal longitudinal axis. Nat. Rev. Neurosci.

15, 655–669.

26. Gao, R., van den Brink, R.L., Pfeffer, T., and Voytek, B. (2020). Neuronal

timescales are functionally dynamic and shaped by cortical microarchitec-

ture. eLife 9, e61277.

27. Chaudhuri, R., Knoblauch, K., Gariel, M.-A., Kennedy, H., and Wang, X.-J.

(2015). A large-scale circuit mechanism for hierarchical dynamical pro-

cessing in the primate cortex. Neuron 88, 419–431.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Nineteen patients undergoing treatment for pharmaco-resistant epilepsy who implanted with hippocampal electrodes were recruited

in the current study. All patients were implanted with stereoelectroencephalography (SEEG) depth electrodes for localization of

epileptogenic regions. Implantation sites were based on clinical considerations. Four patients who have less than 12 good trials

were excluded due to their inabilities to learn the navigation task. The information of the remaining 15 subjects is shown in Table 1,

of which six patients had contacts in the right hippocampus, six patients had contacts in the left hippocampus, and three patients had

contacts in the bilateral hippocampus (4 females; age, 26.33 ±5.08 years; see further details in Table 1). The study was approved by

the local institutional review board, and written informed consent was obtained from all participants.

METHOD DETAILS

Experiment task
The object-location memory task was programmed using Unreal Engine 2 (Epic Games), and participants navigated freely in a cir-

cular virtual arena from a first-person perspective.34,35,51 The virtual environment consisted of a grassy plane with a diameter of about

9500 virtual units (vu) bounded by a cylindrical cliff and several distal orientation cues: two mountains, a sun, and some clouds. Par-

ticipants used the arrow keys on the laptop keyboard (left, right, and forward arrows) to control their movement and the spacebar key

to indicate their response. Keeping pressing the forward arrow resulted in an acceleration until maximum speed was reached.

The task started with an initial learning phase. The participants were first placed in the center of themaze and one object appeared.

Participants were instructed to pick up the object. Whenever the object was picked up, the next object can be appeared. Therefore,

the starting point for the next object was the true position of the previous object. Participants then performed memory recall trials

(Figure 1A). Each trial began with a presentation of the cued target object for 2 s. Next, participants freely navigated to the target

(‘retrieval’ phase). After participants had made a button-press response at the assumed goal location, feedback was shown for

1.5 s, which differed depending on the drop error (i.e., the distance between the response location and the true goal location; Fig-

ure 1B) (‘feedback’ phase). Feedback ranged from strongly positive (green smiley face) to strongly negative (red frown face;
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Figure 1C). Finally, the target object for that trial was presented in its correct location and participants collected the object from there,

allowing for further learning (‘re-encoding’ phase). A fixation crosshair was shown for 3 to 5 s (randomly jittered) between trials.

Behavioral data were continuously written to a logfile. Participants completed a variable number of trials depending on their

compliance.

Intracranial EEG recordings and preprocessing
Intracranial EEG recordings were conducted in Chinese and German hospitals separately, see further detail in previous

studies.34,35,52 IEEG data were acquired using a Compumedics system (Compumedics, Abbotsford, Victoria, Australia) at a sampling

rate of 2000 Hz in Freiburg, a Nihon-Kohden system (Yuquan Hospital) and a Blackrock NeuroPort system (First Affiliated Hospital of

PLA General Hospital) at a sampling rate of 2000 Hz or 1000 Hz in Beijing. All data were re-referenced to the nearest white-matter

contact. The re-referenced signals were notch-filtered at 50 Hz and their harmonics to remove power line noise. Then we applied

a detection procedure based on the statistical properties of signal envelope to identify epileptic discharges and other arti-

facts.34,35,53,54 Specifically, signals were detected as interictal epileptiform discharges when either of the following two criteria

was met: (i) the envelope of the unfiltered signal was 4 SDs above its mean value; (ii) the envelope of the filtered signal (25–80 Hz)

was 5 SDs above its mean value. All signals were also visually inspected for interictal spikes. Intervals with artifacts on each channel

were excluded from further analyses.

Electrode localization
For participants from Beijing, post-implantation CT was co-registered onto the pre-implantation MRI using FreeSurfer Software

Suite55 (https://surfer.nmr.mgh.harvard.edu/) and FMRIB Software Library56 (https://fsl.fmrib.ox.ac.uk/). The intracranial elec-

trodes were localized using our custom toolbox.57 Then all electrodes were mapped onto Montreal Neurological Institute (MNI)

standard space for visualization. For participants from Germany, post-implantation MRI was co-registered onto the pre-implanta-

tion MRI using FMRIB Software Library. The post-implantation MRI was normalized to MNI space. The normalized post-implan-

tation MRI was further visually inspected using PyLocator (http://pylocator.thorstenkranz.de/) to manually identify the electrode

locations.

Data analysis
To analyze the spectral properties of the hippocampus signals, the preprocessed signals were convolvedwith six-cycleMorlet wave-

lets at 50 logarithmically spaced frequencies ranging from 2 to 150 Hz. The power values were log transformed and then z-scored

according to the mean and standard deviation of the power during all movement periods. As in previous studies,34,35 fast movement

epochs were defined as periods during retrieval phases with speed exceeding the fastest tercile of all movement speed. Spectral

properties of the hippocampus during fast epochs in retrieval phases were extracted for further statistics.

To estimatewhether and how neural oscillations weremodulated by goal distances, the entire data were bandpass-filtered (2-5 Hz,

6-9 Hz, 10-16 Hz, 30-100Hz, 70-150 Hz). Then, oscillatory power of each frequency band was extracted using a Hilbert transform.

The power was then normalized as described above.

Analyses of goal distance modulation employed only the fastest tertile of movement periods in the retrieval phase, assuming

that participants were more confident about the assumed goal location when they were traveling at high speed. Given the fact

that goal distance representations depend on spatial memory, goal distance representations are supposedly not precise if sub-

jects did not recall the target location successfully. Therefore, we split the trials into two groups depending on drop error: Trials

with a drop error less than 1500vu were treated as good trials (positive and neutral feedback, 41.09% of all trials), otherwise they

were bad trials (negative feedback, 58.91% of all trials).35 Goal distance modulation was calculated separately for good and bad

trials. The amount of data in good and bad trials was not different (t(14) = -0.127, p = 0.901). Goal distance was defined as the

Euclidean distance between the instantaneous location and the true goal location (Figure 1B), and then rescaled within the range

between 0 and 1 over all trials, where a value of 0 represents a distance of zero from the goal and a value of 1 reflects the location

furthest away from the goal.9,11 For each channel, we predicted the z-scored normalized power in each frequency band during fast

epochs of the retrieval phase by the corresponding goal distance. Specifically, the z-scored power served as the dependent var-

iable, while the corresponding rescaled goal distance served as the independent variable. The regression was performed using

Matlab fitglm.m function as follow.

Power � 1+ b�Goal distance

This resulted in one goal distance modulation (b) for each contact at each frequency band and trial category (good and bad trials).

Given that the traditional method was susceptible to neural oscillations, we calculated neuronal timescales (t) using a newmethod

specifically developed for intracranial recordings. In particular, we utilized the python FOOOF toolbox50 to parametrize the power

spectrum for periodic (oscillation) and aperiodic (1/f like) components.

For periodic components, we detected local frequency peaks within the 4-12 Hz range in 40 contacts, and examined the relation-

ship between those peaks and the longitudinal axis of the hippocampus.

For non-periodic components, theoretical modeling shows that after removing the oscillations, the autocorrelation function of the

time series has the form of e
� t
t , and its Fourier transform has the form of the Lorentzian function: A

f2 + f2
knee

, where fknee corresponds to the

point where the slope changes rapidly.26,37
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In FOOOF toolbox, the aperiodic component L was modeled as follows:

L = b � log ðk + FxÞ
where b is the offset, F is the predefined frequency band. x is the exponent and k is the ‘knee’ parameter. To avoid the influence of

low-frequency oscillations in the data, we fit fknee in the range of 12–150 Hz according to previous suggestions.37 Non-zero k value

suggests a bend in the aperiodic component, in which case the knee frequency fknee can be inferred using the following formula:

fknee = k1=x

Finally, the timescale can be computed as:

t =
1000

2pfknee

We detected knee frequency in 42 contacts, and obtained the t values from those contacts. It is worth noting that not all PSDs

showed an apparent knee frequency.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical tests were performed using linear mixed-effect (LME) models with the Matlab fitlme.m function. LME models are well

suited to account for repeated measurements from one subject, because each subject was implanted with various number of elec-

trode contacts.32,58 For power spectral properties and goal distance modulation, a random intercept model was used to examine

whether the variable was significantly different from 0:

Y � 1+ ð1jSubjectÞ
where the dependent variable Y was either goal distance modulation (b), oscillatory power, or a power contrast (good trials vs. bad

trials). The term in the parentheses was the random effect of subjects (below the same).

In order to compare the theta power between left and right hippocampus, the LME model was defined as follows:

Y � 1 + X+ ð1jSubjectÞ
where the dependent variable Y was theta power, and the fixed effect X referred to brain hemisphere (left/right).

To examine whether either goal distance modulation or temporal hierarchy significantly varied along the hippocampal axis, the

random intercept LME model was applied as follows:

Y � 1 + X+ ð1jSubjectÞ
where the dependent variable Y was goal distance modulation (b), neural timescale (t) or theta peak, and the fixed effect X was the y

coordinate of the hippocampal contacts in MNI space.
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