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1.  INTRODUCTION

Working memory (WM) is more than a short-term storage 
for sensory input; it comprises the ability to actively 
manipulate and modify information as well (Baddeley, 
2003). This is essential, since our environment is con-
stantly in flux, and we need to organise perceptual 

information in that dynamic context. Indeed, one of the 

key features of WM is that it can adapt and alter its con-

tents to anticipate change. For example, the egocentric 

location of an object will change constantly as we move 

around, yet we can easily point at its current spatial loca-

tion even when it is temporarily out of sight (Rieser et al., 
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1986), showing that previous sensory input can be 
recalled and transformed to predict its changed state. 
Thus, the ability to not only maintain but also add infor-
mation through imagery, and to update existing informa-
tion in WM, is essential to guide both current and future 
behaviour (Rainer et al., 1999).

The brain seems to use the same neural substrate to 
maintain both current and previous sensory inputs, as 
well as mentally imagined items. Imagery and sensory-
driven perception activate spatially overlapping regions 
in the visual cortex, and share a common coding scheme 
(Stokes et  al., 2009). Furthermore, items maintained in 
WM as well as items that are only imagined are both rep-
resented in early visual brain regions, with common activ-
ity patterns resembling those generated by direct visual 
input (Albers et  al., 2013). These neural commonalities 
make a functional interpretation seem appealing (but see 
also Iamshchinina et  al., 2021; Linke & Cusack, 2015), 
and several authors have highlighted the similarity of 
WM, imagery, and perception (Dijkstra et  al., 2019; 
Pearson, 2019), all of which may use primarily sensory 
brain regions, such as the visual cortex, as a “black-
board” (Roelfsema & De Lange, 2016).

Loaded with such wide-ranging demands, an import-
ant question is how the brain keeps its blackboard clean 
and fit for re-use. Not only that, but it also needs to be 
able to distinguish between current sensory input and 
maintained or imagined information. This is further com-
pounded by the fact that it is not sufficient to retain only 
stimulus-related information, since WM ultimately serves 
to guide behaviour (Stokes et al, 2013; van Ede et  al., 
2019). In many cases, information that was once encoded 
to reflect certain properties of the environment may thus 
have to be updated or even superseded to relate to a 
possible course of action. On the one hand, it could be 
an economical strategy to free up WM capacity by remov-
ing or overwriting information that is no longer 
behaviourally relevant. On the other hand, preserving 
such information might carry the adaptive advantage that 
transformations could be re-applied on their originals, or 
even adjusted if the need arose. To arbitrate between 
these alternatives was the purpose of the present study.

There is at least some prior evidence from fMRI to 
suggest that once an item is transformed (e.g., mentally 
rotated) it replaces its original altogether (Christophel 
et  al., 2015). Similarly, MEG recordings taken during 
mental rotation suggest that a gradual change occurs 
from the original representation into a rotated one 
(Trübutschek et al., 2019). By contrast, a recent study by 
Iamshchinina et al. (2021) showed that perceptual repre-
sentations in the primary visual cortex lasted throughout 
the mental rotation interval. It was nevertheless not the 
primary aim of these studies to track the possible simul-

taneous maintenance of perceived and transformed 
items in WM, so that the evidence is not clear-cut: In the 
studies by Christophel et al. (2015) and Trübutschek et al. 
(2019), the relationship between original and rotated 
items was constant across trials, which complicates any 
attempt to assess the presence of either item inde-
pendently. For instance, between two representations 
rotated either 0 or 120°, neural decoding of intermediate 
values cannot be definitely attributed to either represen-
tation. Conversely, in the study by Iamshchinina et  al. 
(2021), there was only a single item being manipulated, 
so the original item may only have been found to persist 
as a consequence of presentation history, rather than it 
being part of WM proper.

A compounding, more general challenge to studying 
transformations in WM is the recent discovery that neural 
activity alone may not reflect the full breadth of WM oper-
ations. WM maintenance may not rely on unbroken 
chains of ongoing neural activity (LaRocque et al., 2013), 
as was previously thought (e.g., Curtis & D’Esposito, 
2003; Kamiński et al., 2017). Rather, it may utilise activity-
silent or quiescent brain states that are mediated by 
short-term changes in functional connectivity (Mongillo 
et  al., 2008). Furthermore, it has been suggested that 
there may be different functional states in WM relating to 
passive maintenance and active, attentional updating 
(Olivers et al., 2011; Trübutschek et al., 2019), and both 
these states are presumably traversed when stored infor-
mation is transformed. Importantly, although active atten-
tional updating of WM is associated with easily 
measurable neural activity, this is not necessarily the 
case for passive maintenance (Kamiński & Rutishauser, 
2020; but see also Muhle-Karbe, Myers, & Stokes, 2021; 
Stokes et al., 2020). It is thus conceivable that traditional, 
activity-based measurement approaches miss part of the 
picture.

In our study, we sought to overcome these issues and 
decisively assess and compare WM states before and 
after mental transformation. First, although activity-
quiescent states remain intrinsically difficult to measure 
non-invasively, it has recently been confirmed that func-
tional connectivity can be illuminated by driving a stan-
dardised impulse signal through the network, as the 
response to that stimulation will partially reflect the 
momentary state of the network, independent from the 
focus of attention, and independent from its activity state 
(Buonomano & Maass, 2009; Rose et al., 2016; Stokes 
et al., 2015; Wolff et al., 2015, 2017). This is important, as 
EEG voltage decoding of working memory contents can 
drop to baseline within approximately a second (e.g., 
fig. 2D in Wolff et al., 2017). Therefore, we implemented a 
perturb-and-measure approach (Wolff et al., 2015, 2017) 
by presenting task-irrelevant impulse stimuli during WM 
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maintenance, before and after mental rotation of ran-
domly oriented gratings. Second, we implemented a 
design in which original and transformed items were suf-
ficiently independent from each other, so that they could 
be examined individually. Based on the research to date, 
two contrasting hypotheses were formulated: It may be 
that both the original and the transformed WM items are 
maintained and can be similarly decoded through impulse 
perturbation. Alternatively, one may hypothesise that WM 
only stores task-relevant information, so that once an 
item is transformed, only the resultant representation is 
kept, and the original item that is no longer relevant is 
rapidly discarded.

To preview the principal findings, before rotation, only 
the cued, relevant WM item could be successfully pre-
dicted from impulse-evoked EEG activity, unlike the 
uncued item, which seemed to have been rapidly purged 
from the WM system, replicating earlier findings (Wolff 
et al., 2017; Wolff, Jochim, et al., 2020; Wolff, Kandemir, 
et al., 2020). Prior to the response probe, from the sec-
ond impulse stimulus that followed the rotation instruc-
tion, the imagined rotation product could be decoded. 
Intriguingly, the original orientations could also still be 
decoded at that point in time. The continued presence of 
these obsolete originals in the WM network suggests that 
transformations in WM rely on relatively elaborate “dou-
ble” encoding, which was also associated with faster 
probe response times. Thus, the brain may prioritise rep-
resentational precision and behavioural flexibility over 
storage capacity in spite of its scarcity.

2.  METHOD

2.1.  Participants

Thirty students of the University of Groningen (17 female, 
M Age = 21.3; Range Age = 18 – 31; all right-handed) volun-
teered to participate in the study in exchange for course 
credits or monetary reward (€8 per hour). The participants 
were selected from a larger group by means of a pre-
screening procedure. Pre-screening consisted of a 
behavioural task, lasting approximately 1  hour, which 
was otherwise identical to the EEG session. The selection 

criteria were pre-determined and communicated to the 
participants; at least 70% task accuracy and a response 
time of less than 700 ms on average. The sample size 
was based on earlier studies with a similar design (e.g., 
Wolff et  al., 2017). The study was conducted in accor-
dance with the Declaration of Helsinki (2008), and was 
approved by the Ethical Committee of the Behavioural 
and Social Sciences Faculty of the University of Gronin-
gen (Study ID = 18029-SP). All participants provided writ-
ten informed consent before taking part.

2.2.  Apparatus and stimuli

Participants were seated in a fully lit testing chamber at a 
viewing distance of approximately 60 cm from the screen, 
a 17” Samsung 797DF CRT monitor, set at a refresh rate 
of 100 Hz and a resolution of 1,024 by 798 pixels. The 
stimuli were created and presented with the freely avail-
able Psychtoolbox 3 extension for Matlab (Brainard, 
1997; Kleiner et al., 2007). A custom two-button response 
box connected via a USB interface was used to collect 
behavioural responses.

As shown in Figure 1, the background remained grey 
throughout the experiment (RGB = 128, 128, 128), and a 
black fixation dot with a white outline (0.25° of visual 
angle) was present in the centre of the screen throughout 
the trials. The memory items were circles containing sine-
wave gratings, with 6 different orientations ranging from 
15° to 165° with an interval of 30°. At the beginning of 
each trial, two orientation gratings were presented, each 
centred at 6.5° of visual angle (at 60 cm viewing distance) 
from the centre of the screen on the horizontal axis. All 
gratings were presented at 20% contrast, each again 
with a diameter of 6.5° of visual angle. The spatial fre-
quency of the gratings was set to 0.65 cycles per degree, 
while their phase was randomised within and across tri-
als. The cue stimuli were arrows of 0.5° of visual angle 
“>>”, pointing in the direction of the stimulus that was to 
be cued, presented in black Arial font 0.5° of visual angle 
above the centre of the screen. The direction of rotation 
was cued by an arrow of 1° of visual angle pointing 
clockwise or counter-clockwise (which was absent if no 

Fig. 1.  The design of a single experimental trial. Participants maintained one of two memory items in memory, indicated 
by a retro-cue. Subsequently, this item was rotated (0, 30, or 60°) and eventually compared to the probe stimulus. Impulse 
stimuli were task-irrelevant and served to elicit an EEG response by perturbing the representational network.
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rotation was required), fitted to the middle of a 90° wide 
radian cut out from a circle with a diameter of 8° of visual 
angle. The angle of rotation was presented numerically 
(0, 30, or 60°) in bold black Arial font at a visual angle of 
0.5° above the centre of the screen. The complete rota-
tion instruction including the direction and the angle cov-
ered 2.75° of visual angle on the screen. The impulse 
stimulus consisted of three partially overlapping circles 
each with a diameter of 9.75°. The centre-to-centre dis-
tance of each circle was 6.5°. The probe stimulus was 
presented at the centre of the screen and was always 
identical to one of the 6 sine-wave gratings used as 
memory items.

2.3.  Procedure

Each participant first completed 48 practice trials that 
were identical to the experimental trials prior to EEG 
recording. During practice, all participants were instructed 
and trained to keep their gaze on the fixation dot at all 
times, and to blink only during or after response. Fast and 
accurate responses were encouraged. The whole experi-
ment consisted of 1,440 trials, spread across 4 consecu-
tive sessions separated by breaks with a duration that 
was determined by the participants themselves. In each 
session, participants completed 24 blocks containing 15 
trials each. Within these blocks, trials continued without 
interruption. On average, each participant took 4 hours to 
complete the task, including breaks.

Each trial began with the presentation of a fixation dot 
for 700 ms, followed by the presentation of the memory 
array, which consisted of two orientation gratings that 
appeared on both sides of the visual field for 250 ms. The 
orientations of the gratings were randomly selected with-
out replacement from a uniform distribution, such that 
each of the six orientations was presented the same 
number of times throughout the experiment. Next, a 
blank screen with only the fixation dot was presented fol-
lowing stimulus offset for 500 ms. A retro-cue was then 
presented for 200 ms, indicating which of the two orien-
tation gratings had to be retained in memory. The direc-
tion of the cue (left or right) was randomised, but evenly 
distributed across all conditions. After a delay of 900 ms, 
the impulse signal was on display for 100 ms, and was 
followed by a blank delay interval of 500 ms. Then, the 
rotation instruction was displayed for 200 ms, followed 
by another 900  ms delay. Like the cues, the rotation 
angles (0, 30, or 60°, clockwise and counter-clockwise) 
were randomised but evenly distributed across condi-
tions. The second impulse was then presented for 
100 ms, followed by a delay of 500 ms. Lastly, the probe 
was on display for 200 ms. Participants were asked to 
judge, as quickly as possible, whether the probe was the 

same as the relevant WM item, which was either the rota-
tion product in rotation trials, or the original cued item on 
trials that did not require rotation (i.e., 0°). The probe was 
randomised but matched the relevant WM item in 50% of 
cases, while in the other 50% of cases, the probe was 
sampled randomly from the other possible orientations. 
The participants could report their answer by pressing 
one of the two buttons on the response box. After each 
response, feedback was given by a smiley that was pre-
sented for 200 ms, where a happy face indicated that the 
response was correct. The keys on the response box 
were counterbalanced across participants.

2.4.  EEG acquisition and pre-processing

The EEG signal was recorded at a sample rate of 1,000 Hz 
from 62 Ag/AgCl sintered electrodes deployed with a 10–
20 international layout. The average of all electrodes was 
used as the reference during recording, with a ground 
electrode placed on the sternum. The data were recorded 
with BrainVision Recorder software, and a TMSI Refa 
8-64/72 amplifier. Eye movements were tracked via bipo-
lar electrooculography with vertical electrodes above and 
below the left eye and two horizontal electrodes on ipsi-
lateral sides of both eyes. The impedance at all elec-
trodes was kept below 10 kΩ.

Offline, the data were re-referenced to the mastoids, 
downsampled to 500 Hz, and bandpass filtered (0.1 Hz 
high-pass and 40 Hz low-pass) using EEGLAB (Delorme 
& Makeig, 2004). The data were epoched relative to 
Impulse 1 and Impulse 2 (-150 ms to 600 ms). Epochs 
with excessive variance, voltage drifts, or muscle or eye 
movement artefacts were identified visually and removed 
from all subsequent analyses. In total, 11.3% of epochs 
were rejected.

Finally, the data were reformatted to best capture the 
time-locked neural dynamics evoked by the impulse stim-
uli. The approach was the same as established previously 
(Wolff, Jochim, et al., 2020; Wolff, Kandemir, et al., 2020), 
and the experiment was designed to take advantage of it. 
For the full spatiotemporal analyses, the voltage traces 
from the 17 posterior channels of interest (P7, P5, P3, P1, 
Pz, P2, P4, P6, P8, PO7, PO3, POz, PO4, PO8, O1, Oz, 
and O2) were extracted relative to the impulse onsets 
from 100 to 400 ms. Then, the mean voltage within each 
time window was removed for each trial and channel sep-
arately, which removes drift (as in conventional baselining) 
and isolates the dynamic, stimulus-evoked neural 
response. The voltage traces were then down-sampled to 
100 Hz, and combined with the channel dimension, result-
ing in 510 data features (30 time-points x 17 channels) per 
trial for each impulse. The primary advantage of this 
method is that it does not require a pre-stimulus baseline 
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that is either not neutral (in the case of taking the baseline 
right before the impulse), or temporally too far away to be 
effective due to signal drift (in the case of a pre-stimulus 
baseline). As the method ensures that only data from the 
time-window in question are used, the relative baselines 
used here for Impulse 1 and 2 are equally effective, com-
pared to a pre-trial baseline that could be “better” for 
Impulse 1 (because it is temporally closer) than for Impulse 
2, prohibiting a direct comparison between them, since 
reported effects could be “worse” at Impulse 2 due to 
more unremoved drift compared to Impulse 1. While a 
higher higher-pass filter might alternatively be used to 
effectively remove drift and negate the need for a baseline 
altogether, this could in turn introduce temporal distor-
tions in the data (van Driel, Olivers, & Fahrenfort, 2021), 
similar to a non-neutral baseline. A further advantage of 
the present method is that it may improve sensitivity by 
combining both temporal and spatial dimensions of the 
dynamic signal.

For the time-course analyses of neural dynamics, the 
same posterior channels as above were included. Here, 
we used a 100 ms sliding window from -50 ms to 550 ms 
relative to impulse onsets. Similar as above, the data were 
down sampled to 100 Hz within each time-window, and 
the mean voltage was removed. The resulting 10 time-
points were then combined with the channels, resulting in 
170 data features. The analyses (described below) were 
done on each time-point that the time-window was cen-
tred on, separately. The time-courses were smoothed with 
a gaussian smoothing kernel (SD = 16 ms).

For the searchlight analyses, the whole spatiotempo-
ral window was used, but the analyses were repeated 
iteratively for each electrode and its closest two neigh-
bours (thus 30 time-points x 3 channels), across all 62 
electrodes.

2.5.  EEG analyses

2.5.1.  Linear discriminant contrast

We used cross-validated representational similarity anal-
ysis (RSA) with Mahalanobis distance (Nili et al., 2014), 
also termed linear discriminant contrast (LDC; Walther 
et al., 2016), to investigate the contributions of different 
task-related models to the neural codes evoked by 
Impulse 1 (before rotation instructions) and Impulse 2 
(after rotation instructions). We used an 8-fold cross-
validation approach to compute the squared Mahalano-
bis distance (MD2) between condition pairs of all condition 
combinations of interest at Impulse 1 and Impulse 2, 
using the following formula:

MD.
2  =  PA  − PB( )train  ×  train

+1∑  ×  PA  − PB( )test
T

The data were randomly split into 8 folds using stratified 
sampling that ensures a roughly equal number of trials in 
each fold. The test data consisted of a single left out fold 
and the train data consisted of the remaining 7 folds, which 
was also used to estimate the noise covariance matrix (∑). 
The number of trials of each condition was equalised 
through random subsampling within the test fold and train 
folds. PA and PB were the trial-averaged patterns of condi-
tions A and B of the subsampled trials of the test and train 
data. The noise covariance matrix was estimated from the 
subsampled train data by subtracting the trial-averaged 
activity patterns of each condition from all trials of the cor-
responding condition. The covariance matrix was calcu-
lated using a shrinkage estimator (Ledoit & Wolf, 2004) on 
the resulting condition-mean centred trial by feature matrix. 
The pseudoinverse of the covariance matrix (∑+1) was then 
used to compute the MD2 between all possible condition 
differences, resulting in an n-conditions by n-conditions 
representational dissimilarity matrix (RDM). This procedure 
was repeated for all test and train fold combinations. The 
8-fold partitioning and the subsampling within test and 
train data was randomised. To ensure stable results, the 
above procedure was repeated a total of 100 times for 
each subject, with random folds and random subsampling 
each time. The resulting data RDMs were averaged across 
repetitions and folds, resulting in a single RDM per subject 
and impulse. These RDMs were z-scored and then 
regressed against specific task models of interest.

The conditions that were considered and the task 
models were different for each impulse. At Impulse 1, we 
considered the cued item (6 orientations), the uncued 
item (6 orientations), and the cued location (left or right). 
The pairwise MD2s between all 72 unique condition 
combinations resulted in a 72 × 72 data RDM for each 
subject. The task models we tested at Impulse 1 com-
prised the cued location model (left or right), parametric 
coding models for the cued and uncued memory item 
(absolute circular distance between cued items, and 
between uncued items), as well as a parametric coding 
model of the generalisation between cued and uncued 
items (absolute circular distance between cued and 
uncued). The parametric coding models thus assumed a 
circular relationship between absolute circular distances 
and pattern similarities. All models (except the cued 
location model) were subdivided and tested separately 
within the same and across different cueing conditions 
to test for (cued) location specificity. For example, when 
testing only for the same cued location version of the 
cued item model, the cells comprising across-location 
generalisation (which were in our case in the upper left 
and lower right of the design matrix) were down-
weighted to 0 by replacing them with the average of the 
design matrix. All task model RDMs were z-scored and 
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regressed simultaneously against the z-scored data RDM 
of each subject using multiple regression.

At Impulse 2, we considered the cued item (6 orienta-
tions), the rotation instructions (5 conditions), and the 
cued location (left or right), which resulted in a 60 × 60 
RDM for each subject. We first tested the cued location 
and the rotation instructions task models simultaneously 
using multiple regression. The rotation instructions mod-
els consisted of 5 separate models (one for each condi-
tion), each testing same versus different instructions. For 
example, for rotation condition -60°, the model consisted 
of a matrix that assumed higher similarity/lower Mahala-
nobis distance for all condition-combination cells that 
included the rotation condition -60°, which were filled 
with -1s, whereas all other cells were filled with 1 sec-
ond. The same logic applied to all other rotation condi-
tion models. We did thus not make any assumptions 
about the relationship between the rotation conditions. 
The resulting model fits/beta values of the rotation mod-
els were averaged for plotting and statistical analyses. 
We furthermore tested parametric coding models of the 
cued item, the rotated item, and the generalisation 
between them using a similar logic as for the parametric 
coding models used for Impulse 1 described above. 
However, since the cued and the rotated item models are 
statistically related, the models were fit on the residual 
data RDMs of the other. This meant that the cued item 
model was fit to the residual variance of the data RDM 
that was not accounted for by the rotated item model 
data, and vice versa. The rotated item model was mar-
ginally related to the rotation instructions model, so it too 
was regressed out before fitting the rotated item model. 
The cued-rotated generalisation model was fit to the 
residual variance of the data RDM that was not accounted 
for by either the cued item model or the rotated item 
model. As in the case of Impulse 1, all models (except for 
the cued location model) were subdivided and tested 
separately for within and across cued location condi-
tions. All model and data RDMs, as well as the residual 
variance RDMs, were z-scored before regression.

Note that we ran simulations (see “Simulations of neu-
ral patterns”) that included the same dependence 
between cued and rotated item when including all rotation 
conditions, which confirmed that fitting the models on the 
residuals adequately removed any residual effects. For 
example, when only the rotated item is modelled, fitting 
the cued model on the residual showed no effect for the 
cued item (see Fig.  4A). We believe that the used RSA 
approach was thus appropriate, enabling us to test the 
contribution of different effects but related models, without 
the need to remove data. Nonetheless, we repeated the 
RSA at Impulse 2 after excluding all no-rotation trials, thus 
removing the dependency between cued and rotated 

items. This resulted in a 48 by 48 RDM (2 locations, 4 rota-
tion conditions, 6 cued item orientations). The models 
were the same as described above (minus one rotation 
condition model due to the exclusion). However, the mod-
els of either the cued or the rotated item were not fit on the 
residual of the other since they were not statistically related 
to one another anymore, rendering this step unnecessary.

Finally, as an additional control, we also applied an 
RSA with the rotated item models and the cued item mod-
els to the full data at Impulse 2, without trial removal. Cru-
cially however, the model fit related to one model was 
estimated independently before it was regressed out. We 
first randomly split the data into two independent halves 
(data_1 and data_2), before computing the MD2s between 
all trial condition combinations within each half inde-
pendently using 4-fold cross-validation, resulting in two 
60 by 60 RDMs (RDM_1 and RDM_2) for each subject. 
The cued model fit estimated from RDM_1 was then 
regressed out from RDM_2, before fitting the cued and 
the rotated item models to the now residual RDM_2. The 
same was done for the rotated item model fit, which was 
estimated from RDM_1, regressed out from RDM_2, 
before again applying both models to the residual RDM_2. 
The 1,000 beta values for each model fit on each residual 
RDM per subject were then averaged for subsequent sta-
tistical significance testing. Given the presence of both 
items in the data, if the cued item model contribution esti-
mated from data_1 selectively removed only the cued 
item effect from data_2, without affecting the rotated item 
effect, then the average cued item model fit to the residual 
RDM_2 should, on average, be 0, while the rotated item fit 
should still be positive (and vice versa when regressing 
out the rotated item). This procedure was repeated 1,000 
times, with random data splits in each iteration.

2.5.2.  Correlation of trial-wise decoding strength

We are not aware of a trial-wise RSA approach that can 
test the contribution of correlated models. Thus, in order 
to test if and to what extent the trial-wise strength in 
neural activation patterns related to the cued item cor-
related with the corresponding neural activation patterns 
of the rotated item, we used the same trial-wise decod-
ing approach as in Wolff, Jochim, et al. (2020) at Impulse 
2. For this analysis, we excluded all 0 rotation trials to 
ensure independence between cued and rotated items 
(note that the same was done for the simulations). This 
entailed using an 8-fold cross-validation decoding 
approach using Mahalanobis distance. The data were 
randomly split into 8 folds using stratified sampling 
(ensuring a roughly equal number of trials for each orien-
tation in each fold). The covariance matrix (with shrink-
age estimator; Ledoit & Wolf, 2004) was computed using 
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the 7 folds of the train data. The number of trials of each 
orientation within train data was then equalised via ran-
dom subsampling. The averaged patterns of each orien-
tation of the train data were convolved with a half cosine 
basis set raised to the 5th power to pool information 
across similar orientations (Myers et  al., 2015). The 
Mahalanobis distance between each test trial and aver-
aged orientation patterns of the train data were then 
computed. This procedure was repeated for all test and 
train fold combinations. The resulting 6 distances for 
each trial were summarised into a single “decoding 
strength” value by computing the cosine vector mean of 
the absolute circular distance between test trial’s orien-
tation and averaged orientation patterns of the train tri-
als. To get reliable estimates, the above procedure was 
repeated 100 times (with random folds and subsamples), 
resulting in 100 decoding strength values for each trial 
and subject, which were subsequently averaged. The 
cued and the rotated items were decoded separately at 
Impulse 2. The Pearson correlation between the trial-
wise decoding strengths of the cued and the rotated 
item was computed for each subject separately, Fisher’s 
z-transformed, and statistically tested against 0 (see 
“Statistical significance testing”).

2.5.3.  Decoding generalisation before and after 
mental transformation

We were interested if the neural pattern related to the 
cued item before mental rotation (at Impulse 1) gener-
alised to the neural pattern after mental rotation (at 
Impulse 2). To test this, we trained a classifier using the 
same approach as described in the previous section on 
the neural pattern in all the trials of the cued item at 
Impulse 1 and tested it only on the rotation trials at Impulse 
2 (i.e., excluding the trials in which subjects were instructed 
not to rotate the item), using 8-fold cross-validation, ran-
dom subsampling within test and train folds, and 100 rep-
etitions. Given the cue-specific coding scheme observed 
at Impulse 1, the classifier was trained and tested within 
each cued location condition separately and averaged 
afterwards. The test trials at Impulse 2 were either labelled 
with the cued item, to test temporal generalisation of the 
cued item over time (Wolff, Jochim, et al., 2020), and after 
mental rotation, or labelled with the rotated item, to test 
whether the same neural pattern that codes for the cued 
item was re-used to code for the rotated item.

2.5.4.  Relationship between the neural and 
behavioural data

We were interested if the quality of WM content predicted 
behavioural performance (probe response times and 

accuracy) on a trial-by-trial basis within subjects. We used 
the trial-wise decoding strengths of the cued/original and 
the rotated item at Impulse 2 (excluding the “0 rotation” 
trials) and tested if they predicted trial-wise fluctuations in 
accuracy and response times. First, we regressed the 
decoding strengths against each other to obtain the resid-
uals of each, to ensure that the decoding strengths of the 
cued/original and the rotated item were uncorrelated and 
explained unique aspects of the behavioural measure in 
question. We then used the residuals of the cued/original 
and the rotated item decoding strengths as regressors to 
predict behavioural accuracy (logistic regression) and log-
transformed response times (linear regression) within each 
subject. The resulting regression weights were then tested 
for significance in the expected direction of facilitation.

2.6.  Simulations of neural patterns

We simulated several plausible effects to compare the 
pattern of results of simulated data with the results of the 
actual data, and to ensure that our analyses are adequate 
for our experimental design. Activity patterns were simu-
lated by randomly drawing 20 values from the standard 
normal distribution two times. To simulate a parametric 
pattern for the circular memory items, one of the two pat-
terns was convolved with the sine of the memory item in 
question, and the other with the cosine of the same mem-
ory item of that trial, before adding both signals together. 
Same coding schemes for each item (original and rotated) 
were simulated by using the same random pattern for the 
sine, and the same random pattern for the cosine, of the 
orientation of each item. Unique coding schemes were 
simulated by using randomly different random patterns 
for the sine and cosine of the orientation of each item.

Trial-wise noise was added to the signal by randomly 
drawing 20 values from the standard normal distribution 
and then multiplying it with a random value drawn from a 
normal distribution with mu = 10 and SD = 3. This was 
done separately for each trial to simulate trial-wise fluctu-
ations in neural noise levels. The trial-wise noise patterns 
were added to the signal patterns comprising the overall 
simulated neural signal. We used the same number of tri-
als and proportion of conditions as the experiment, 
including 0 rotation trials.

We simulated and analysed the following scenarios 
that we thought could be expected in this task:

	 A.	� Rotated only: A new activity pattern for the rotated 
item is present in the signal, while the code of the 
original item completely disappears.

	 B.	� Partial rotation: An activity pattern is present in 
every trial that represents an item that is only 
partially rotated (half-way). Neither the original nor 
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the fully rotated item is represented in the signal. 
This simulates the possibility that subjects did not 
fully mentally rotate the item, and/or that its orienta-
tion is attracted to the orientation of the original item.

	 C.	� Same coding schemes: The original and the 
rotated item use the same signal pattern and both 
are present in the data.
	i.	� The patterns of both items are simultaneously 

present in every trial.
	ii.	�The pattern of only one of the items is present in 

a given trial, simulating the possibility that sub-
jects may have only sometimes followed instruc-
tions and mentally rotated the item.

	 D.	� Unique coding schemes: The original and the 
rotated items use unique and independent coding 
schemes and are both present in the data.
	i.	� Both patterns present in every trial.
	ii.	�Only the pattern of one of the items is present in 

a given trial.

For simplicity we did not consider cue-specific effects 
in the simulations (i.e., whether or not the coding schemes 
generalise across cued-locations or not). We ran each 
scenario 100 times, with randomised signal and noise 
patterns each time (simulating 100 subjects). The simu-
lated data were subsequently analysed in the same way 
as the real data of Impulse 2 (LDC and correlation of trial-
wise decoding strengths).

We re-ran the above simulations with explicit rotation 
condition signals added to them. We wanted to ensure 
that rotation signals do not alter the effects related to the 
original and rotated item. The rotation condition signal 
consisted of 6 (one for each rotation condition) unique 
random patterns (20 values drawn from a normal distribu-
tion), one of which was added to the simulation signal in 
each trial, depending on the rotation condition of that trial.

2.7.  Statistical significance testing

We used non-parametric tests to assess statistical signif-
icance in all cases, and all statistical tests were two-sided 
(unless explicitly stated otherwise). We tested for statis-
tical significance of the neural analyses results by ran-
domly shuffling the conditions in question 1,000 times 
and using the resulting null-distribution to conduct a  
t-test. In the case of the LDC and trial-wise decoding 
analyses, this meant that the analyses were re-run with 
randomised condition labels, resulting in 1,000 “null” 
model fits/decoding values per subject. These were 
transformed into null distributions of t-values by comput-
ing the t-value across subjects for each of the 1,000 val-
ues, which was then used for a t-test against 0 of the 
actual model fit/decoding value. For the time-course 

analyses, a cluster-based permutation test (1,000 permu-
tations) was used to correct for multiple comparisons 
over time with a cluster-forming threshold of p < 0.05.

To test for statistical significance of the correlation 
between trial-wise decoding values of the cued and the 
rotated item, the trial-wise decoding values were ran-
domly shuffled 10,000 times, each time obtaining the 
Fisher’s z-transformed correlation value. These were 
transformed into a t-value distribution which was then 
used to perform a t-test.

The relationship between neural and behavioural data 
was tested for statistical significance by shuffling the tri-
als 10,000 times and repeating the regression analyses 
each time. The resulting null-distribution of the beta val-
ues was used to perform a t-test.

We also computed Bayes Factors (BF) to complement 
p-values. We used the Bayesian implementation of the 
non-parametric Wilcoxon signed-rank test with 10,000 
samples and the Cauchy prior with the default scale of 
0.707, as implemented in JASP (JASP Team, 2018).

2.8.  Data and Code Availability

All data and MATLAB code used to generate the results 
and figures of this manuscript are publicly available at 
https://osf​.io​/3hdpc and at https://github​.com​/mijowolff​
/veridical​-and​-transformed​-representations​-in​-wm, 
respectively.

3.  RESULTS

3.1.  Behavioural results

Behavioural measures consisted of response accuracy 
(% correct), reflecting the comparison of the probe and 
the memory item, and reaction time (RT), reflecting the 
time from probe onset until the button press. Mean accu-
racies and median RTs were analysed as a function of 
rotation condition (-60, -30, 0, 30, 60). Behavioural analy-
ses were conducted in the freely available JASP program 
(JASP Team, 2018).

The results were typical for rotation tasks (e.g., Searle & 
Hamm, 2017; Wexler et  al., 1998), and are shown in  
Figure 2. The accuracy in the task was highest when no 
rotation took place and declined as the rotation magnitude 
increased, regardless of direction. Repeated-measures 
ANOVA confirmed that accuracy in at least one condition 
differed from the others, F(4, 116)  =  61.454, p  <  0.001, 
η2 = 0.679, BF10 > 1,000. Post hoc paired t-tests revealed 
that performance differed between all rotation conditions, 
unless rotation magnitude was identical (t -60, -30 (29) = -5.127, 
p < 0.001, BF10 = 588.67; t -60, 0 (29) = -12.613, p < 0.001, 
BF10 > 1,000; t -60, 30 (29) = -5.589, p < 0.001, BF10 > 1,000;  

https://osf.io/3hdpc
https://github.com/mijowolff/veridical-and-transformed-representations-in-wm
https://github.com/mijowolff/veridical-and-transformed-representations-in-wm
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t -60, 60 (29) = 1,444, p = 1, BF10 = 0.476; t -30,0 (29) = -7.487, 
p  <  0.001, BF10  >  1,000; t -30, 30 (29) = -0.463, p  =  1, 
BF10 = 0.217; t -30, 60 (29) = 6.570, p < 0.001, BF10 > 1,000;  
t 0, 30 (29) = 7.024, p < 0.001, BF10 > 1,000; t 0, 60 (29) = 14.057, 
p < 0.001, BF10  > 1,000; t 30, 60 (29)  =  7.033, p  <  0.001, 
BF10 > 1,000; Bonferroni-corrected; Fig. 2A). The distribu-
tion of accuracies across rotation conditions clearly showed 
that greater rotation magnitudes negatively influenced 
recall accuracy, though accuracy remained well above 
chance in all cases.

Rotation magnitude similarly influenced RT, F(2.601, 
75.429) = 16.989, p < 0.001, η2 = 0.369, BF10 > 1,000 (with 
Greenhouse-Geisser correction), with an increase in RT as 
rotation magnitude increased (t -60, -30 (29)  =  -2.376, p = 
0.191, BF10 = 10.993; t -60, 0 (29) = 7.282, p < 0.001, BF10 > 
1,000; t -60, 30 (29) = 3.119, p = 0.023, BF10 = 26.003; t -60, 60 
(29) = 0.367, p = 1, BF10 = 0.212; t -30, 0 (29) = 4.905, p < 
0.001, BF10 = 438.915; t -30, 30 (29) = 0.743, p = 1, BF10 = 0.353; 
t -30, 60 (29) = -2.009, p = 0.468, BF10 = 1.013; t 0, 30 (29) = 
-4.163, p  <  0.001, BF10  =  80.012; t 0, 60 (29)  =  -6.915,  
p < 0.001, BF10 > 1,000; t 30, 60 (29) =  -2.752, p = 0.069, 
BF10  =  14.801; Bonferroni-corrected; Fig.  2B). This clear 
decrease in performance as a function of rotation magni-
tude strongly suggests that items were indeed mentally 
rotated and not replaced from a fixed stimulus set from 
long-term memory.

3.2.  EEG results

3.2.1.  LDC at Impulse 1; before transformation/
after cue

The RDM of Impulse 1, depicting the MD2 between all 
cued, uncued, and cued location combinations, is shown 

in Figure 3A. The cued location model showed a signifi-
cant effect (spatiotemporal: p < 0.01, BF10 > 1,000; time-
course: p < 0.01, -55 ms to 550 ms, cluster-corrected, 
Fig. 3B), likely driven by a shift in spatial attention toward 
the cued item in WM (e.g., Wolff et al., 2017). The cued 
item coding model was statistically significant within 
cued location (spatiotemporal: p = 0.02, BF10 = 11.117; 
time-course: p < 0.01, 92 ms to 300 ms, cluster-corrected), 
cluster-corrected, but not across (spatiotemporal: 
p  =  0.712, BF10  =  0.219), and the difference between 
within and across cued location conditions of the cued 
item coding model was statistically significant (spatio-
temporal: p  =  0.042; time-course: p  <  0.01, 140  ms to 
292  ms, cluster-corrected; Fig.  3C, left), though the 
Bayesian evidence for or against an effect was ambigu-
ous (BF10  =  1.671). The uncued item coding models 
showed no significant effects and Bayesian evidence 
against effects (spatiotemporal, within cued location: 
p = 0.354, BF10 = 0.276; across cued location: p = 0.426, 
BF10 = 0.242; difference: p = 0.242, BF10 = 0.394; Fig. 3C, 
middle). These results replicate previous findings in EEG 
of cue-specific neural coding of the cued WM item when 
it was laterally presented, and no detectable trace of the 
uncued item (Barbosa et  al., 2021; Wolff et  al., 2017; 
Wolff, Jochim, et al., 2020; Wolff, Kandemir, et al., 2020). 
None of the generalisation models between the cued and 
uncued item reached the statistical significance thres
hold (spatiotemporal, within cued location: p  =  0.536, 
BF10 = 0.238; across cued location: p = 0.058, BF10 = 1.349; 
difference: p = 0.368, BF10 = 0.257; Fig. 3C, right).

We used a relative, within time-window baseline (see 
“EEG Acquisition and Pre-processing”), as used in pre-
vious works (Wolff, Jochim, et al., 2020; Wolff, Kandemir, 

Fig. 2.  Behavioural performance as a function of rotation. (A) Mean accuracy in percent correct. (B) Reaction times 
(means of medians) in seconds. Green dots represent individual data points, black dots reflect averages, and error bars 
represent within-subject 95% confidence intervals (Morey, 2008). Significant pairwise differences are indicated with 
asterisks (*p < 0.05, Bonferroni-corrected).
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Fig. 3.  LDC before transformation & after the retro-cue at Impulse 1. (A) Average RDM and design matrices. Condition 
combinations are color-coded. All condition combinations for the right cue condition are explicitly illustrated on the  
y-axis. The remaining cells follow the same convention. The inset shows the design matrix for each model (except cued 
location) for one cued location (the size of the white outline in the RDM (B) Model fit (beta) of cued location condition. 
Top: Spatiotemporal; Middle: Searchlight; Bottom: Time-resolved. (C) Model fits of WM items (cued, uncued) and their 
generalisation. Models are separated into within-cued location condition (within) and across-cued location condition 
(across). Same convention as (B). Error bars (spatiotemporal) and error shadings (time-resolved) are 95% C.I. Statistically 
significant (p < 0.05) model fits and differences of model fits between within and across locations are marked with (*).  
Statistically significant time-course clusters (p < 0.05, cluster-corrected) are marked with coloured bars at the top 
(corresponding colour for significant model fits, yellow for differences between within and across locations).
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et al., 2020). The pattern of results stayed the same when 
using a pre-trial baseline instead, though the generalisa-
tion model between cued and uncued item across cued 
location reached the significance threshold when using a 
pre-trial baseline (Supplementary Fig. S1A).

3.2.2.  Simulations of predicted neural effects  
after mental transformation in WM

We simulated plausible changes in the neural coding 
schemes of WM content after mental transformation. The 
analyses for the simulated data and the data at Impulse 2 
were the same as well as using largely the same models, 
though for simplicity, we did not simulate or model spatial 
specificity, that is, differences in coding schemes when 

the original item was presented on the left or the right 
side. The patterns of results for each scenario are shown 
in Figure 4. We simulated the presence of only the code 
for the rotated item (Fig. 4A), a single code for an orienta-
tion that is halfway between the original and the fully 
rotated item (i.e., partial rotation, Fig. 4B), as well as the 
presence of both the original and the fully rotated items 
simultaneously (Fig. 4C, D). Either the coding schemes 
for both were the same (i.e., using the same random pat-
terns to represent the orientations of each item, Fig. 4C), 
or different (i.e., using randomly different random pat-
terns to represent the orientations of each item, Fig. 4D). 
Note that almost every considered scenario resulted in a 
qualitatively unique pattern of results. The exception is 
the partial rotation of the original item (Fig. 4B) and the 

Fig. 4.  Simulation results (N = 100) of plausible maintenance scenarios of the original cued item and the rotated item 
after mental transformation. The left panel shows the schematics of each scenario, the middle panel the model fits of the 
original item, the rotated item, and the generalisation between them, and the right panel the mean correlation (Fisher’s z) 
between the trial-wise decoding strengths of the original and the rotated item. (A) Rotated only: Only the fully rotated item 
is present in the WM network, and the original item is removed completely. (B) Partial rotation: The original item is only 
halfway rotated in each trial, and the original item is no longer present. Note that the analyses would incorrectly imply that 
both the original and the fully rotated items are simultaneously present in the network using the same coding schemes 
(i.e., generalisation between them) (C) Original & rotated, same coding schemes: The original and the (fully) rotated items 
are both coded using the same coding schemes. i) both are present in every trial (note the same pattern of results as 
B). ii) either one, or the other is represented in a given trial. (D) Original & rotated, different coding schemes: The original 
and the rotated item are represented in unique coding schemes, i) simultaneously on every trial, or ii) only one of them is 
randomly represented on every trial. Error bars are 95% C.I. Asterisks denote statistically significant (p < 0.05) results of 
the simulated data.
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simultaneous representation of both the original and the 
rotated item in every trial, both using the same coding 
schemes (Fig. 4Ci), which cannot be distinguished with 
the analyses we employ. This means that if subjects sys-
tematically only partially rotated the item, resulting in an 
attraction of the orientation of the rotated item to the ori-
entation of the original item, the results may falsely imply 
that both items were simultaneously present in every trial. 
However, as seen in the next section below, the pattern 
of results of the actual data at Impulse 2 after transforma-
tion best resembled the scenario depicted in Figure 4Di: 
the simultaneous maintenance of both items in every trial 
(original and rotated), with unique coding schemes.

None of the simulations reported in Figure 4 included 
an explicit signal that codes for the rotation conditions, 
and accordingly, none of the model fits were significant 
(Supplementary Fig. S2, left column). Including an explicit 
rotation condition signal in the simulations, unsurpris-
ingly, resulted in significant model fits for the rotation 
condition model, but did not alter the pattern of results 
for the remaining model fits reported in Figure 4 (Supple-
mentary Fig. S2, right column).

3.2.3.  LDC at Impulse 2; after transformation

The RDM of Impulse 2, depicting the MD2 between all 
cued item, rotation instructions, and cued location con-
dition combinations, is shown in Figure  5A. The cued 
location model was significant (spatiotemporal: p < 0.01, 
BF10 > 1,000; time-course: p < 0.01, 68 ms to 452 ms, 
cluster-corrected), as were both rotation instruction 
coding models (spatiotemporal, within cued location: 
p < 0.01, BF10 > 1,000; time-course: -55 ms to 20 ms, 
52 ms to 550 ms, p < 0.01, cluster-corrected; spatiotem-
poral, across cued location: p < 0.01, BF10 > 1,000; time-
course: 36 ms to 550 ms, p < 0.01, cluster-corrected), 
with no difference between them (spatiotemporal: 
p = 0.478, BF10 = 0.326; Fig. 5B). Even though the origi-
nal orientation of the cued item was not behaviourally 
relevant at Impulse 2 anymore, both cued item coding 
models were statistically significant for both within cued 
location (spatiotemporal: p < 0.01, BF10 = 11.126; time-
course: 236 ms to 428 ms, p < 0.01, cluster-corrected) 
and across cued location (spatiotemporal: p  =  0.044, 
BF10 = 1.454; time-course: 108 ms to 148 ms, p = 0.012, 
268 ms to 308 ms, p = 0.044, cluster-corrected Fig. 5C, 
left), though Bayesian evidence was ambiguous for the 
latter. This suggests that the neural code of the cued 
item was less spatially specific at Impulse 2 after trans-
formation, in contrast to the code at Impulse 1 before 
transformation. However, while there was no difference 
between them in the spatiotemporal analysis (p = 0.448, 
BF10  =  0.248), the time-course analysis showed a 

significant difference between within- and across-
models of the cued item (332 ms to 380 ms, p < 0.01, 
cluster-corrected), suggesting some spatial specificity, 
nonetheless.

The rotated item coding models were both statistically 
significant (within cued location, spatiotemporal: p < 0.01, 
BF10 = 53.742; time-course: 116 ms to 428 ms, p < 0.01, 
cluster-corrected; across cued location, spatiotemporal: 
p < 0.01, BF10 = 251.767; time-course: 100 ms to 420 ms, 
cluster-corrected), and were not different from each other 
(spatiotemporal: p = 0.68, BF10 = 0.196; Fig. 5C, middle). 
The generalisation coding models between the cued and 
the rotated item were not significant with Bayesian evi-
dence for no effect (spatiotemporal: within cued location: 
p = 0.892, BF10 = 0.198; across cued location: p = 0.704, 
BF10 = 0.210; difference: p = 0.912, BF10 = 0.213; Fig. 5C, 
right), though the time-course analysis revealed a signifi-
cant cluster in the difference (time-course: 68 ms 124 ms, 
p < 0.01, cluster-corrected).

We explicitly tested if there was a significant difference 
between the within-item models (cued and rotated) and 
the generalisation models, which would provide evidence 
that the cued and the rotated items are coded in signifi-
cantly different coding schemes from one another. To 
quantify this “cost of generalization” (cf. Wolff, Jochim, 
et al., 2020), we compared the average beta values of the 
within-item models with the average of the generalisation 
models. The difference between within-item models and 
the generalisation models was significant (spatiotempo-
ral: p < 0.01, BF10 = 14.157).

The pattern of results of the spatiotemporal signal 
when applying a pre-trial baseline instead of a relative, 
within time-window baseline, was qualitatively the same 
(Supplementary Fig. S1B).

We also explored whether decoding was possible 
from stable delay activity that is minimally influenced by 
the presentation of the impulse, by using the averaged 
voltage traces right before Impulse 2 (-100 to 0 ms), and 
after (500 to 600 ms), when the impulse-evoked signal 
has presumably largely subsided. Cued items could be 
decoded, but there was no evidence for the rotated item 
from neural activity that was not evoked by the impulse 
(Supplementary Fig.  S3), suggesting that the impulse 
may be critical to “illuminate” WM content. However, this 
result should be considered with caution, as the present 
study was not designed to directly measure the impact of 
the impulse on WM decoding.

We furthermore checked whether the pattern of results 
of the spatiotemporal signal remained the same, when 
excluding all no-rotation trials. The results remained 
largely the same (Supplementary Fig.  S4), though the 
across-location model of the cued item failed to reach 
significance.
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Fig. 5.  LDC after transformation at Impulse 2. (A) Average RDM and design matrices. Condition combinations are 
color-coded. All condition combinations for the right cue condition are explicitly illustrated on the y-axis. The remaining 
cells follow the same convention. The inset shows the design matrix for each model (except cued location) for one cued 
location (the size of the white outline in the RDM). (B) Model fit (beta) of cued location condition and rotation condition 
(separately for within cued location and across cued location). Top: Spatiotemporal; Middle: Searchlight; Bottom: Time-
course. (C) Model fits of the original cued item, the rotated item, and their generalisation. Models are separated into 
within cued location condition (within) and across cued location condition (across). Same convention as (B). Error bars 
(spatiotemporal) and error shadings (time-course) are 95% C.I. Statistically significant (p < 0.05) model fits and differences 
of model fits between within and across locations are marked with asterisks (*) for spatiotemporal. Statistically significant 
clusters (p < 0.05, cluster-corrected) are marked with coloured bars at the top (corresponding colour for significant model 
fits, yellow for differences between within and across locations) for the time-course.
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Fig. 7.  Cross-generalisation of coding schemes between 
the original item before transformation at Impulse 1 and 
the original item and the rotated item after transformation 
at Impulse 2. The “0 rotation” condition is excluded. Error 
bars are 95% C.I. Statistically significant (p < 0.05) cross-
generalisation is marked with an asterisk (*).

Finally, when keeping the 0 rotation trials in the data, 
we found that when the effect of one model (cued or 
rotated item) was estimated from independent data 
before regressing it out from the test data, only the fit of 
the model that was not removed was statistically signifi-
cant (Supplementary Fig. S5).

Overall, these results provide evidence for the pres-
ence of both the cued, and the mentally rotated items in 
the WM network, which are both coded using distinct 
coding schemes that do not cross-generalise, in line with 
the simulation results of scenario 4D above.

3.2.4.  Correlation between trial-wise decoding 
strengths of the original and the rotated item  
after transformation

The results presented above are based on trial-averaged 
data and do not rule out the possibility that although evi-
dence for both the cued/original and the rotated item was 
found, subjects only maintained one of the two in individ-
ual trials. We tested this by correlating the trial-wise 
decoding strengths of the cued and the rotated item 
(excluding no-rotation trials). A negative correlation would 
be evidence that only one of them was coded in any one 
trial, while the simultaneous maintenance of both items 
in each trial would result in a positive correlation due to 
variable noise levels of each trial. While it did not reach 
statistical significance, there was a trend of a positive 

correlation between the decoding strengths of the cued 
and the rotated item (p  =  0.084, BF10  =  1.087; Fig.  6). 
Explicitly testing whether the correlation was negative 
provided strong evidence against it (BF10 = 0.074, one-
sided). This provides evidence that there was no trade-off 
in the neural strengths of the items across trials and sug-
gests that both items may have been present simultane-
ously in the neural data in at least some trials, which best 
fits with scenario 4Di above.

3.2.5.  Generalisation of coding schemes before  
and after transformation

We tested if the coding scheme used for the cued item 
before rotation (Impulse 1) generalised to the coding 
scheme after rotation (Impulse 2). Training the classifier 
on the cued item at Impulse 1 resulted in significant 
cross-generalisation when tested on the cued item at 
Impulse 2 of rotation trials (p = 0.028, BF10 = 2.648; Fig. 7, 
left). This is evidence that even in the face of mental 
manipulation, the code of the original, non-manipulated 
item persists, and its coding scheme remains relatively 
stable over time. We also tested if the classifier trained on 
the cued item at Impulse 1 generalised to the mentally 
rotated item at Impulse 2. We found no evidence for this 
(p  =  0.726, BF10  =  0.209; Fig.  7, right). The difference 

Fig. 6.  Mean correlation (Fisher’s z transformed) between 
the trial-wise decoding strengths of the cued/original item 
and the rotated item after transformation at Impulse 2. Error 
bars are the 95% C.I. of the mean.
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between the two was not significant (p  =  0.204, 
BF10  =  0.318), however. This again suggests that the 
mental rotation of the cued item resulted in a new coding 
scheme for the rotated item, without removing the  
original item from the WM network, which remained rela-
tively stable.

3.2.6.  Relationship between trial-wise decoding 
strengths and WM performance

We tested if the trial-wise decoding strengths of the cued/
original and the rotated item after transformation at 
Impulse 2 predicted trial-wise fluctuations in perfor-
mance. Using logistic regression, we found no evidence 
that accuracy was predicted by either the cued/original 
item or the rotated item on a trial-by-trial basis (cued: 
p = 0.904, BF10 = 0.197; rotated: p = 0.197, BF10 = 0.555, 
Fig. 8A). Trial-wise variance in log-RT was predicted by 
both using linear regression, however (cued: p = 0.044, 
BF10 = 1.57; rotated: p = 0.021, BF10 = 4.809, Fig. 8B).

4.  DISCUSSION

For working memory to guide behaviour in the flexible 
manner required by the dynamic environment we live in, 
it cannot rely on the storage and static maintenance of 
sensory input alone, but also needs to be able to manip-
ulate and update information when necessary. Here, we 
assessed how working memory represents items that 
were not directly formed by sensory input, but were 
imagined by variable degrees of mental rotation. From 

the EEG response to an impulse stimulus presented 
during WM maintenance, we were able to decode not 
only visually presented items, but also imaginary ones. 
We discovered that the originally presented memory 
items, although rendered task-irrelevant after mental 
rotation, continued to be represented concurrently with, 
and were coded independently from, the imagined rota-
tion products. By contrast, uncued items seemed to be 
purged rapidly from WM, and were not decodable, as 
was previously observed (Wolff et al., 2017).

4.1.  Representational coding of veridical  
and imagined items

As predicted by synaptic theories of WM (Mongillo et al., 
2008; Zucker & Regehr, 2002), the visual impulse allowed 
an external readout of WM contents in the present study. 
Previous studies that have employed the impulse pertur-
bation technique have shown its efficacy for stimuli that 
are presented in both the visual and auditory modality, 
and which are encoded in WM (Wolff et al., 2017, Wolff, 
Jochim, et al., 2020, Wolff, Kandemir, et al., 2020). Here 
we found that the impulse is also effective for imagined 
items, supporting the idea that these items are similarly 
maintained in WM, and that they may equally utilise 
activity-quiescent brain states. The results furthermore 
suggest that the recovery of information in WM by 
means of a visual impulse is not dependent on the 
encoding of previous, direct sensory input, extending 
the scope of this approach. At the same time, the EEG 
patterns associated with the veridical (cued) item and 

Fig. 8.  Relationship between trial-wise decoding at Impulse 2 and performance. (A) Regression weights (beta) of 
logistic regression between item decoding and accuracy. (B) Regression weights (beta) of linear regression between item 
decoding and log-transformed reaction times. The “0 rotation” condition is excluded. Error bars are 95% C.I. * p < 0.05.
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the rotated item showed that their representations might 
differ in certain ways.

Although the cued item was clearly retained through-
out the trial, change was observed in its neural represen-
tation across different time points. At the second impulse, 
the interval during which the cued item was significant 
was comparatively late, compared to the first impulse 
(236 to 428 ms post-impulse vs. 92 ms to 300 ms, respec-
tively). Speculatively, this might be related to the change 
in task-relevance of the cued item at these timepoints. 
Furthermore, at Impulse 2, the representation of the cued 
orientation was no longer spatially specific. Earlier stud-
ies using multiple impulse signals reported that memory 
content remained spatially specific in time (Wolff, Jochim, 
et al., 2020), which suggests that the loss of spatial spec-
ificity could be related to the present transformations. In 
a recent animal study, Panichello and Buschman (2021) 
observed that spatially specific memory content was 
transformed to another state with the involvement of the 
prefrontal cortex, once this memory representation 
became relevant for behaviour, and that this representa-
tion no longer carried spatial information (cf. Ester et al., 
2009; Fukuda et al., 2016; Stokes et al., 2013). Likewise, 
in the current study, the cued orientation might have been 
transformed to a new state once it was relevant for men-
tal rotation, and in which spatial information would not 
have a functional role. At the same time, we did observe 
cross-generalisation of the cued item at Impulse 2 with 
that of Impulse 1, before rotation, suggesting that the 
coding scheme is otherwise still similar. Future research 
might clarify the role of transformations in the observed 
loss of spatial specificity by adding a systematic manipu-
lation of the task-relevance of spatial information.

The results furthermore provided evidence that veridi-
cal and imagined items share the same representational 
substrate in visual processing areas of the brain, as both 
were sensitive to the visual impulse signal, and decod-
able from posterior electrodes alone. However, we also 
observed that there was no representational similarity 
between the original, cued orientation and the rotation 
product at the second impulse. That is, a given orienta-
tion angle (e.g., 30°) was represented differently, depend-
ing on whether it was previously presented on the screen, 
or the end product of mental rotation (e.g., 60° rotated 
30° counter-clockwise). This finding seems to contradict 
those of the fMRI study by Stokes et al. (2009) on mental 
imagery, in which mental imagery and visual perception 
activated representations in the same areas of the visual 
cortex. Similar correspondence was later reported for 
items held in WM (Albers et al., 2013), and Christophel 
et al. (2015) also observed that original and rotated colour 
patches seemed to share a similar coding scheme in 
visual and parietal cortices. It is possible that the discrep-

ancy between the currently observed lack of representa-
tional similarity between rotated and original items, and 
the similarity observed by the aforementioned authors is 
due to the inherent temporal blurring of fMRI as well as 
their analysis approach, in which multiple time points 
were combined. It is also possible that subtle differences 
in the level of abstraction may have led to differences in 
coding scheme, as has been reported for auditory stimuli 
before (Linke & Cusack, 2015). Nevertheless, our results 
also show important commonalities between rotated and 
original items in that both were revealed in the impulse 
response, which is in line with these studies.

The representational difference between the original 
and rotated item that we observed contradicts a strict 
interpretation of memory models that define working 
memory as an activated and attended portion of long-
term memory (e.g., Cowan, 1999, 2005; Oberauer, 2002, 
2009). In such models, a single memory system houses 
all representations. The representations only differ with 
regard to their activity level; high levels correspond to 
items held in WM and in the focus of attention, while low 
levels correspond to items held in long-term memory. 
Accordingly, since in our design the visually presented 
items as well as the rotation products consisted of the 
same 6 orientation angles, these representations should 
have cross-generalised: Mental rotation should have 
reactivated the same, shared orientation representations 
from the low activity state as visually presented items 
would have. As indicated, our results showed instead 
that the veridical and imagined representations did not 
cross-generalise. Since veridical items did generalise 
over time, from the first to the second impulse, despite a 
loss of spatial specificity, the lack of cross-generalisation 
between veridical and transformed representations can-
not be ascribed to a lack of power. More generally, this 
lack of cross-generalisation also supports the idea that 
our participants performed mental rotation by actually 
generating new images, rather than recalling discrete 
items from long-term memory.

Diverging from our results, a recent study showed 
cross-generalisation of maintained and transformed WM 
representations of spatial locations (Günseli et al., 2024). 
In this study, participants were asked to maintain a loca-
tion, followed by a transformation of spatial locations. 
Maintained and transformed spatial WM representations 
shared a common representational format, as measured 
by cross-generalisation of alpha activity. The relation-
ship that exists between alpha activity and covert atten-
tion is one possible explanation for these diverging 
results, as alpha-band activity tracks the locus of covert 
attention (Kelly et  al., 2006; Thut et  al., 2006; Worden 
et al., 2000). Therefore, the cross-generalisation between 
maintained and transformed spatial WM representations 
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in Günseli et  al. (2024) could be explained by covert 
attention moving from one location (the encoded loca-
tion) to another (the transformed location).

4.2.  Capacity limits

In view of the scarcity of WM space, possibly the most 
striking outcome of the present study was the novel 
observation that obsolete original items were retained in 
WM concurrently with the task-relevant rotation products 
that were derived from them. It is conceivable that this 
liberal use of WM space is also one of the factors that 
make mental rotation a relatively difficult task. The rota-
tion process itself is certainly not trivial, as was evident 
from the progressive reduction in performance for 
increasing angles of rotation that we presently observed, 
and which is commonly found in mental rotation para-
digms (e.g., Searle & Hamm, 2017; Wexler et al., 1998). 
After the rotation itself, the way in which both the now-
irrelevant starting point and the outcome of this transfor-
mation process are maintained in WM may further 
compound that difficulty.

By contrast, previous work has shown that items that 
are no longer task-relevant, such as those that are 
uncued, are quickly purged, and can no longer be 
decoded even after impulse perturbation (Wolff et  al., 
2017). This has supported the view that WM may employ 
an active purging mechanism to get rid of information 
that is no longer needed. Alternatively, though, such 
information may also simply fade from WM, due to its 
inherently volatile nature, in the absence of active rein-
forcement (e.g., periodic refreshing). The latter account is 
in line with predictions from a recent computational 
model of WM, based on calcium-mediated short-term 
synaptic plasticity (Pals et al., 2020). The current results 
nevertheless provide further evidence that a purging 
mechanism may indeed exist, since the fate of irrelevant 
items, that is, uncued items and original items after rota-
tion, was not the same. This may indicate that the brain 
treated them differently, such that the former, but not the 
latter items were actively removed.

There may be a good reason why the brain seems to 
maintain the obsolete original items. In the current task, 
holding onto the original item as well as the rotation 
instructions allows the participants to recreate or double-
check the rotation product. There was some evidence 
that this helped to improve task performance; lower 
probe response times were associated with better decod-
ing of both original and rotated items. While a memory-
related account of this effect is most parsimonious, it 
should be noted that the impulse response might also be 
mediated by attentional processes. Nevertheless, in 
everyday scenarios, it may also often make sense to 

remember more than the end-product of a mental trans-
formation. For instance, if we predict the future location 
of a temporarily occluded vehicle in the environment, it 
would be useful to do so flexibly, to be able to make use 
of different estimates of its speed. Such flexibility requires 
the retention of the original input (the location of the vehi-
cle) and the transformation (estimated distance covered 
based on speed), so that they can be used again and 
adjusted as needed. Thus, we propose that the mainte-
nance behaviour observed in our experiment might reflect 
the prioritisation of adaptive flexibility over WM storage 
capacity, despite the scarcity of the latter. Whether the 
retention of the original input is an active process, or the 
result of more passive mechanisms that leave the original 
item in place, remains to be determined.

In this context, it may be worth noting that in the study 
of WM, a lot of research has been devoted to charting 
WM capacity limits: The number of items (e.g., Cowan, 
2001; Miller, 1956), the organisation of information in indi-
vidual properties and compound objects (e.g., Luck & 
Vogel, 1997; Xu, 2002), and the nature of WM capacity 
itself in terms of continuous resources or discrete slots 
(e.g., Bays et al., 2009; Zhang & Luck, 2008). The insights 
gained from this long-standing and important line of 
research remain highly relevant to this date. However, the 
present work suggests that a full understanding of WM 
cannot reflect on storage capacity alone. It also needs to 
develop a perspective on how the available storage 
capacity in WM may be utilised to support adaptive 
behaviour. The current results suggest that at times, the 
already strongly limited capacity of WM is filled very rap-
idly. From a strict capacity perspective, there would be 
little reason to assume that WM load at any one time after 
the initial retro-cue in our experiment would be more than 
a single item, yet the data showed differently. It is crucial 
to further our understanding of WM by examining the 
conditions that may foster such capacity-costly behaviour.

5.  CONCLUSION

In line with synaptic theories of WM, we found that the 
representations of mentally rotated items and of visually 
presented items rely on the same neural substrate, as 
both could be decoded during maintenance from the EEG 
impulse response, even though their coding schemes 
appeared to be different. Importantly, in doing so the brain 
seems willing to sacrifice already-scarce WM capacity to 
support flexible behaviour in dynamic environments, as 
we observed that the original, no-longer task-relevant 
items continued to be maintained concurrently with trans-
formed ones. This finding prompts the question of how 
much WM capacity is commonly “lost” by this striking 
tendency to hold on to obsolete information.
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