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Electrophysiological signatures underlying
variability in human memory consolidation

Wei Duan1,2,8, Zhansheng Xu3,4,8, Dong Chen 1,2, Jing Wang5, Jiali Liu1,2,
Zheng Tan1,2, Xue Xiao1,2, Pengcheng Lv1,2, Mengyang Wang5, Ken A. Paller 6,
Nikolai Axmacher 7 & Liang Wang 1,2

We experience countless pieces of new information each day, but remem-
bering them later depends on firmly instilling memory storage in the brain.
Numerous studies have implicated non-rapid eye movement (NREM) sleep in
consolidating memories via interactions between hippocampus and cortex.
However, the temporal dynamics of this hippocampal-cortical communication
and the concomitant neural oscillations duringmemory reactivations remains
unclear. To address this issue, the present study used the procedure of tar-
geted memory reactivation (TMR) following learning of object-location asso-
ciations to selectively reactivatememories during humanNREMsleep. Cortical
pattern reactivation and hippocampal-cortical coupling were measured with
intracranial EEG recordings in patients with epilepsy. We found that TMR
produced variable amounts of memory enhancement across a set of object-
location associations. Successful TMR increased hippocampal ripples and
cortical spindles, apparent during twodiscrete sweepsof reactivation. Thefirst
reactivation sweep was accompanied by increased hippocampal-cortical
communication and hippocampal ripple events coupled to local cortical
activity (cortical ripples and high-frequency broadband activity). In contrast,
hippocampal-cortical coupling decreased during the second sweep, while
increased cortical spindle activity indicated continued cortical processing to
achieve long-term storage. Taken together, our findings show how dynamic
patterns of item-level reactivation and hippocampal-cortical communication
support memory enhancement during NREM sleep.

Sleep can facilitate the consolidation of newly encoded information,
thus producing long-lastingmemories. At the neural level, this process
relies on neural oscillations (in particular, thalamo-cortical sleep
spindles and hippocampal sharp wave-ripples), reactivation of mem-
ory traces, and hippocampal-neocortical interactions1–4. Although

humans encounter countless pieces of information every day, only a
small subset remains available to be remembered later. Emerging
evidence suggests that sleep-dependent memory consolidation is not
a passive process but actively supports memory storage5–8. Impor-
tantly, however, not all encoded information is consolidated equally,
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and somememories are preferentially consolidated7–10. Recent studies
have started to explore this selective consolidation of specific mem-
ories, but the neural mechanisms underlying this process remain
poorly understood.

Previous research suggests that this selection process may be
triggered by salient tags that are attached to specific memories
during encoding to mark important information. One example of
such preferred processing is emotional memory. Some studies
showed that compared with neutral events, memories of emo-
tional events were reactivated and consolidated with priority7–9.
Besides that, sleep selectively consolidates memories on the basis
of reward information. A human behavioral study found that
providing reward expectancy after training improved sleep-
dependent memory consolidation10. Beyond these pieces of
intrinsically valuable information, sensory tags have been used to
experimentally manipulate memory consolidation. In the past
decade, a powerful method for investigating sleep consolidation—
targeted memory reactivation (TMR)—has come to be widely
used11. In this method, sensory cues (e.g., sound or odor stimuli)
are paired with information during learning and then presented
again during subsequent sleep. A large number of studies have
shown that these sensory cues can reliably influence memory
storage11–14. In short, endogenous tags based on emotion or
reward, or exogenous sensory cues, can systematically improve
consolidation during sleep and thus strengthen the corresponding
memories. On the other hand, it is worth noting that endogenous
and exogenous tags are not necessary for memory reactivation.
For example, Schreiner et al. found that memory reactivation can
occur without external cues15.

How does sleep selectively enhance tagged memories? Previous
studies suggest that memory reactivation is important for sleep-
dependent memory enhancement. Sterpenich et al. showed that
compared to non-rewarded events, neural patterns of rewarded
events were predominant in N3 stage (slow-wave sleep, SWS), indi-
cating that reward-related tags promote the reactivation of rewarded
memories in NREM sleep to enhance their consolidation7. Animal and
human TMR studies similarly found that sensory cues promote
reactivation of cued memories, and the degree of reactivation pre-
dicts subsequent memory performance16–19. Interestingly, cortical
reactivation evoked by a single TMR cue appears to occur in multiple
consecutive sweeps and produce a temporal sequence of
reactivation20. In a rat experiment, a cue-evoked increase of hippo-
campal replay lasted for 10 s, until another acoustic cue was played19.
These echoes of reactivation after sensory cues suggest that TMR
may strengthen memory traces through reverberation of replay
between hippocampus and cortex12. In addition, a large number of
studies have documented that neural oscillations during NREM sleep,
such as thalamocortical spindles and hippocampal ripples, play cri-
tical roles in memory consolidation21–23. Researchers proposed that
ripples continuously retransmit information that has been reorga-
nized or integrated in the hippocampus to the cortex for long-term
storage21,24,25. This assumption is supported by the evidence that
cortical ripples and high-frequency broadband (HFB) activities (i.e.,
60–160Hz) are coupled to the hippocampal ripple events, indicating
hippocampal-cortical information communication24,26,27.

Representational similarity analysis (RSA) has emerged as a
powerful tool to identify the formation of stimulus-specific memory
traces and their reactivation during subsequent processing stages,
including short-termmemory maintenance28 and long-term memory
retrieval29. In addition, we found recently that stimulus-specific
representations reemerged spontaneously in associationwith ripples
during NREM sleep, and that this benefited memory consolidation in
humans3.

The systems consolidation theory hypothesizes that newly enco-
ded memory traces are interactively processed in neocortical and

hippocampal networks in order to become stable long-lasting
memories22,30–32. The existing evidence has demonstrated that TMR
procedures can induce hippocampal-cortical functional connectivity
change33–35. For example, Cousins and colleagues found that TMR
significantly enhanced functional connectivity between the caudate
nucleus and hippocampus using motor learning task35 (i.e., serial
reaction time task).However, due to the limited temporal resolution of
fMRI and the low sensitivity of scalp EEG for activity in deep brain
areas, it remains unclear how human hippocampal-cortical interac-
tions changes when cortical reactivation occurs.

It is noteworthy that not all TMR cues have the same effect. For
example, TMR effects can be influenced by pre-sleep memory accu-
racy. TMR benefits for spatial memory were more apparent for weak
memories than strong memories36–40. This indicates that the catego-
rical comparison of tagged vs. untagged memories may be compli-
cated by other factors that influence whether memories are
strengthened. In the present study, we analyzed neural signals that
may help explain why some TMR-cued items are preferentially
strengthened during sleep.

A key challenge is to precisely characterize brain activity during
sleep that is directly related to the enhancement of a specificmemory.
To face this challenge, we recorded intracranial EEG (iEEG) in patients
with medically intractable epilepsy who performed an object-location
TMR paradigm. The rare opportunity to directly measure neurophy-
siological responses in these patients allowed us to test the temporal
dynamics of neocortical pattern reactivation, local neural oscillations
(e.g., hippocampal ripples, cortical spindles), and hippocampal-
cortical coupling. Based on recent TMR studies, we hypothesized
that when auditory cues were presented during NREM sleep, some
memorieswere selectively strengthened, and thiswas accompaniedby
specific signatures of reactivation, including hippocampal activation
and hippocampal-cortical interactions.

Results
Experimental task and behavioral results
Eleven epilepsy patients (Table S1) participated in the object-location
TMR paradigm (Fig. 1A, B, see section “Methods” for details). Briefly,
participants learned to associate 50 unique items with specific loca-
tions on a grid, each item paired with a characteristic sound (e.g.,
goblet with breaking sound). After learning, a pre-sleep test was per-
formed, during which participants had to place objects to the correct
locations. DuringNREM sleep, the sounds for 25 objects were played in
the expectation of causing a TMR effect13. When the participants woke
up the next morning, all item locations were tested as in the pre-sleep
test. Drop error was assessed as the Euclidean distance between the
response location and the correct location. Drop error gradually
decreased with the learning process (Fig. 1D): the drop error for the
intermediate trials of learning phase was significantly lower than that
for the first trial of learning phase (t(10) = −7.665, p <0.001); the drop
error for the last trial of learningphasewas significantly lower than that
for the intermediate trial of learning phase (t(10) = −13.334, p <0.001).
Critically, drop error for the pre-sleep test (t(10) = −15.068, p < 0.001)
and the post-sleep test (t(10) = −11.279, p <0.001) were significantly
lower than the chance level, which indicated that the subjects carefully
memorized the association between objects and locations. Drop error
between cued and no-cued items in pre-sleep test was no significant
difference (Fig. S1A). The measurement of memory change score was
used to assessmemoryperformance by comparing the accuracy of the
recalled position in pre-sleep test and post-sleep test (seeMethods for
details). We found a significant though relatively weak TMR effect:
memory change score was higher for objects cued by their sounds
during sleep than for those not cued (t(10) = 2.23, p =0.049 by paired-
sample t-test; Fig. 1E). Further analysis showed that the variability in
memory change due to TMR was not consistent for specific objects
over subjects (Fig. S1C).
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Item-level cortical pattern around hippocampal ripples in
learning stage
Cortical and hippocampal contacts for all subjects (Table S2) were
separately shown in Fig. 2A, G. For each subject, one contact located in
the hippocampus was selected for ripple detection (see “Methods” for
details). The dataset included 7,763 ripples during the learning stage,
corresponding to anaverage rate and standarddeviationof0.40±0.14
events per second (ripple duration: 33 ± 12ms), similar to the previous
results41. In Table S4, we presented the distribution of ripple peak

frequencies. It is worth noting that human ripple frequency is sig-
nificantly lower than that of rodents42–46, possibly due to the larger
network involved in humans47. In addition, a detailed comparison of
hippocampal ripples among various species by Buzsáki et al. revealed
that the duration of human ripples was shorter than that of rodent
ripples48. Liu et al. systematically summarized the characteristics and
differences of ripples detection in rodent and primate45. Therefore,
when detecting human ripples, we need to consider this species dif-
ference and carefully refer to the detection methods and results of

Fig. 1 | Task design and behavioral results. A experiment protocol. The experi-
ment consisted of five consecutive stages: preview, learning, pre-sleep test, sleep,
and post-sleep test. B Detailed task procedure. During preview phase (left), item
paired with a characteristic sound was presented at specific locations one after the
other and participants were instructed to remember the location of each item. In
the learning stage (middle), trials startedwith an itempresented in the center of the
screen (also paired with a sound). Participants attempted to place each item to the
correct location. After the participant confirmed itemplacement by a button press,
the itemwas then displayed in the correct location as the feedback. The process of
pre-sleep test and the post-sleep test were identical with learning except there was
no feedback in the tests. During NREM sleep (right), the sounds for 25 items and 25
control sound (guitar strum) were played for six rounds.C The size of the item and
the grid. Learning of items stopped once these items were placed within 150 pixels

(circular area) surrounding the correct locationon two consecutive rounds.DDrop
error (mean values ± SEM) deceased with the learning process (t(10) = −7.665,
p <0.001; t(10) = −13.334, p <0.001; from left to right, two-sided paired-sample t-
test, N = 11) and was significantly lower than chance level during pre-sleep test, and
post-sleep test (t(10) = −15.068, p <0.001; t(10) = −11.279, p <0.001; respectively,
two-sided paired-sample t-test, N = 11). E TMR effect: memory change score (mean
values ± SEM) were higher for objects cued by their sounds during sleep than for
those not cued (t(10) = 2.23, p =0.049 by two-sided paired-sample t-test, N = 11).
The schematic illustrations (cat, racket, sleep and broadcast) are sourced from The
Noun Project (https://thenounproject.com, icons created by Lewen Design, Maan
Icons, Teewara soontorn and Ian Rahmadi Kurniawan, respectively) under a
Royalty-Free License. *p <0.05, ***p <0.001.
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previous human studies. Our results showed that the frequency and
duration of ripples detected in the present study were consistent with
findings reported in previous human ripple studies26,41. Distributions of
between-ripple intervals, grand-average peri-ripple field potential and
spectral decomposition of ripples during the learning were shown in
Fig. 2B–E. The ripple occurrence rate of each subject is shown in
Table S3.

We normalized ripple rate within subject to account for indi-
vidual variation in ripple rate (see section “Methods” for details).
Then we examined whether ripples occurred during a specific time
during retrieval phase. We assessed ripple rate 0-2000ms after
stimulus onset and observed that the normalized ripple rate
between 440–1200ms (Fig. 2F) after stimulus onset was sig-
nificantly higher than baseline (p = 0.032, cluster-based permuta-
tion test). To further investigate whether the ripple rate during
learning was associated with successful recall of item location, we
divided the learning trials into two groups based on the drop error
in either the pre-sleep or post-sleep test (Fig. S2A). The results
revealed that the ripple rate in the low error group was significantly
higher than that in the high error group.

Previous studies indicated that ripples played an important role in
the reactivation of mnemonic information3,41,49. We further investi-
gated whether item level representations can be detected around the
occurrence of ripple during retrieval phase. We applied Spearman
correlation to assess the retrieval-retrieval neural pattern similarity
(RRS) in high-gamma band (50–140Hz). Within-Item (WI) similarity
was calculated as the cortical pattern similarity between trial pairswith
the same item (Fig. 2I), while Between-Items (BI) similarity was calcu-
lated as the cortical pattern similarity between trial pairs with different
items (Fig. 2J). The item-level neural representationwas determined by
observing significantly greater WI similarity compared to BI similarity
(Fig. 2K, L). Our analysis revealed significant item-level neural repre-
sentations (t(10) = 4.54, p =0.001). This indicated that the cortical
high-gammapatterns around hippocampal ripple contained item-level
information. To test the hypothesis that the representation was item-
specific or influenced by memory effects, we divided the items into
two groups based on the drop error of the pre-sleep test or memory
change scores, and then calculated the respective item-specific
representations (WI-BI) for each group (Fig. S3). All subgroups
showed significant differences from zero, but no significant difference

Fig. 2 | Item-level cortical high-gamma pattern around hippocampal ripples
during the learning stage. A Depiction of hippocampal contacts in all patients
(N = 11). Each color denotes one patient, and for each participant, we select one
hippocampal contact to identify ripples (marked by large spheres). B Example of
ripple events in hippocampal recordings during the learning stage. From top to
bottom: raw hippocampal LFP; ripple-band filtered LFP (70–180Hz); normalized
ripple-band envelope above the threshold were detected as ripple events.
C, D Grand average peri-ripple field potential and spectrogram during learning
phase (n = 7763 ripple events from 11 patients). E Distribution of inter-ripple
intervals. F Normalized ripple rate (mean values ± SEM) triggered by cue onset
during the learning stage. The yellow bar indicates time period of significant
increases in ripple rate (p =0.032, cluster-based permutation test based on one-
sidedpaired-sample t-test,N = 11).GDistribution of all intracranial cortical contacts

in all patients (N = 11). H RRS (retrieval-retrieval similarity) schematic illustration
between different learning rounds. Cortical activity pattern around ripple onset
(±500ms)was correlated either between trials with the same items (WI) or between
different items (BI). Item-level representation was calculated by subtracting BI
similarity from WI similarity. I Averaged WI similarity. J Averaged BI similarity.
K Averaged Item-level representation. L WI similarity (averaged across ±0.5 s) was
significantly higher than BI similarity (t(10) = 4.54, p =0.001, two-sided paired-
sample t-test, N = 11). Data are presented as mean values ± SEM. **p <0.01, RRS:
difference of retrieval-retrieval similarity. WI within item. BI between item. The
schematic illustrations (clock and computer) are sourced from The Noun Project
(https://thenounproject.com, icons created by Thea Graph and Maxicons, respec-
tively) under a Royalty-Free License.
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wasobserved between the subgroups. This indicated that item-specific
representations were not linked to memory effects.

Two behavioral-relevant item reactivations during sleep
Previous researchers have identified the reactivation of corresponding
objects (categories) during sleep after TMR-cues are played17,20,50. We
aimed to investigate whether the reactivation induced by auditory
cues during sleep heterogeneously affected memory consolidation of
specific items. Firstly, we computed the Retrieval-Sleep Similarity
(RSS) by calculating Spearman correlation between the cortical high-
gamma patterns during learning ripples and patterns during sleep
after corresponding TMR cue onset (Fig. 3A, Step 1). The gamma pat-
tern is a vector (1 × contacts) composed of gamma power (averaged
from 50 to 140Hz) of every cortical contact. Subsequently, we asses-
sed the SpearmancorrelationbetweenRSS andmemory change scores
for each subject and each round (Fig. 3A, Step 2). The averages across
subjects and rounds were depicted in Fig. 3B. After the cluster-based
permutation test, two significant clusters emerged (Fig. 3B, p =0.004,
p =0.003, from left to right; Fig. 3C). We compressed the Y-axis of Rho
matrix to more clearly display the dynamic changes in reactivation
(Fig. S4A). To rule out the effect of sound stimulus durations on
reactivation patterns, we realigned the representational similarity data
of each trial to the offset of the sound stimulus. We then recalculated
the correlation between RSS and memory change scores (Fig. S5).
Similar to Fig. 3B, we still found two significant clusters. To validate the
stability of this behavioral-relevant reactivation pattern, we calculated
this pattern for each round (Fig. S6) and each subject (Fig. S8), and
accessed the similarity between this pattern for each round (Fig. S7)
and each subject (Fig. S9) with the pattern of the main result. Overall,
our results indicated a notably stable behavioral-relevant item reacti-
vations pattern (for both round level and subject level, p <0.001
with Binomial test). In addition, to further verify whether multiple
reactivations occurred individually, we extracted the oscillatory
components51 from the behavioral-relevant reactivation matrix and
observed strong low-frequency oscillations for each subject, with an
average frequency peak of 0.8Hz (Fig. S10). This indicated that mul-
tiple reactivations indeed occurred at the subject level.

To further validate the robustness of behavioral-relevant reacti-
vation, we applied a different ripple detection criterion (filtering in
80–120Hz and at least 3 cycles) across all hippocampal contacts. We
then recalculated the reactivation, as shown in Fig. S11. There were
three significant reactivation clusters (cluster1: from 400ms to
1320ms, p =0.006; cluster2: from 2010 ms to 2460ms, p = 0.008;
cluster3: from 2840ms to 3740ms, p =0.004; from left to right), with
the second and third reactivation clusters aligning with our main
results. We also verified that the timing of reactivation on the Y-axis
does not show a significant difference from themain results (Fig. S11D,
E). In addition, a significant reactivation cluster emerged around 1-s
post cue, which was consistent with previous research suggesting that
reactivation directly after TMR may be driven by sensory stimuli12.

In order to investigate the neural mechanisms underlying con-
solidation selectively benefits for some items, we split the 25 cued
items into memory strengthening group and memory decaying group
(i.e., the top group with the strongest memory change score (9 items)
was categorized into a “strengthening” condition and the bottom
group with the lowest score (9 items) into a “decaying” condition)
(Fig. 4A). No significant difference between strengthening and decay-
ing items was found in hippocampal ripple rate during learning
(Fig. S2B).However, we found that reactivationwas significantly higher
for items from the memory-strengthening condition than for those
from the memory-decaying condition during two temporal clusters
(Fig. 4B, Cluster 1: 1.6–2.6 s, p = 0.018; Cluster 2: 2.8–3.8 s, p = 0.020;
cluster-based permutation test). We compressed the Y-axis of RSS
matrix to more clearly display the dynamic changes in reactivation
(Fig. S4B). We also conducted two control analyses to verify the

specificity of the reactivation pattern by using non-learning-ripple
trials data and control condition (guitar strum) data (Fig. S12). The
difference between strengthening and decaying items of non-ripple
trials showed a similar trend as ripple trials did (Fig. S12A, minimum
P-value = 0.056, cluster-based permutation test). In addition, we tested
whether the reactivation resultsweredrivenbydifferences inpre-sleep
accuracy of strengthening vs. decaying items (t(10) = 7.3, p < 0.001;
Fig. S1B), and compared reactivation of two groups of items deter-
mined entirely by pre-sleep accuracy butmatched formemory change
score. RSS results showed no significant reactivation differences
between the two groups (Fig. S13), indicating that higher reactivation
of strengthening items cannot be purely explained by differences in
pre-sleep accuracy.

Differential occurrence rate of hippocampal ripples and cortical
spindles during two reactivations
We further investigated the temporal dynamics of neural oscillations
during the TMR period. We first detected hippocampal ripples and
cortical spindles during sleep (Fig. 4C–E). The results showed that
therewere indeed hippocampal ripples and cortical spindles occurring
in this period (Fig. S14). Subsequently, we compared the ripple and
spindle rate differences using repeatedmeasures ANOVA between the
three conditions (strengthening, decaying and control) during the two
intervals (1.6–2.6 s and 2.8–3.8 s). During the first reactivation, the
repeated measures ANOVA revealed a significant difference between
the ripple rate for the three conditions (F(2,20) = 3.7, p =0.043). Post-
hoc t-tests showed that the ripple rate of the strengthening condition
was significantly higher than that of control conditions (t(10) = 2.31,
p =0.043), and showed an increasing trend than that of the decaying
conditions, but did not reach statistical significance (t(10) = 2.174,
p =0.054). However, during the second reactivation, there was no
significant difference among the three conditions (F(2,20) = 0.21,
p =0.81, Fig. 4F). Concerning cortical spindles, no differences were
observed between the three conditions during the first reactivation
(F(2,20) = 0, p =0.998). During the second reactivation, the repeated
measures ANOVA revealed a significant difference between the three
conditions (F(2,20) = 5.58, p = 0.012). Post-hoc t-tests showed that the
strengthening condition exhibited a significantly higher spindle rate
than the decaying and control conditions (t(10) = 2.637, p = 0.025;
t(10) = 3.226, p =0.009, respectively, Fig. 4G).

In addition, time-frequency spectrograms of hippocampus and
cortex during these two intervals also supported the above findings
from another perspective. There were significant clusters in the fre-
quency range of ripples in the hippocampus only during the first
reactivation (Fig. S15B, p <0.01, cluster-based permutation test).When
comparing cortical spectrograms between the two conditions, we
found difference in spindle activity during the first reactivation period.
But it should be pointed out that the intensity of the difference was
lower than the subsequent second reactivation cluster. This result
suggests that the changing trend of spindle activity differences
(strengthening>decaying) is consistent with the result of spindle
events detection (Fig. S15A, p < 0.01, cluster-based permutation test).
The findings indicated that the two sequential reactivations separately
associated with hippocampal oscillations (increased ripples) and cor-
tical oscillations (increased spindles)maybe indicative of distinct roles
in memory consolidation.

Dynamic hippocampal-cortical synchronization during two
reactivations
We calculated hippocampal-cortical coherence to measure inter-
regional synchronization during time periods of two reactivations.
As shown in Fig. 5A, coherence was significantly enhanced for
strengthening over decaying items and control condition during the
first reactivation (frequency range strengthening > decaying, 16–30Hz:
p <0.001; frequency range strengthening > control, 20–45Hz: p < 0.001;
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Fig. 3 | Behavioral-relevant item reactivations during sleep. A Procedure for
calculating behavioral-relevant item reactivations. Step 1: computing the Retrieval-
Sleep Similarity (RSS) between the cortical high-gamma patterns around ripple
onset during learning and the corresponding patterns during sleep after cue onset
for each item. The gamma pattern is a vector (1 × contacts) composed of gamma
power (averaged from 50 to 140Hz) of every cortical contact. Step 2: calculating
the Spearman correlation (Rho) between RSS and memory change scores over 25

items. B The average Rho across subjects and rounds. Two significant clusters
emerged after the one-sided cluster-based permutation test (p =0.004, p =0.003,
from left to right, N = 11).C The average Rhowithin Cluster 1 and Cluster 2 are both
significantly greater than zero (t(10) = 4.26, p =0.002, t(10) = 3.44, p =0.006,N = 11,
one-sided paired-sample t-test and Bonferroni correction, from left to right,
respectively). Data are presented as mean values ± SEM. **p <0.01. The schematic
illustrations are sourced from The Noun Project under a Royalty-Free License.
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cluster-based permutation test). This result was reversed during the
second reactivation (Fig. 5E; frequency range decaying > strengthening,
10–21 Hz: p = 0.001; frequency range decaying > control, 10–21Hz:
p <0.001, cluster-based permutation test). We used imaginary coher-
ence to obtain similar results, thereby ruling out the influence of
volume conduction effects (Fig. S16). We further found the
hippocampal-cortical coherence was mostly contributed by the ipsi-
lateral recording sites (Fig. S17). In a complementary analysis, we
assessed the time-resolved coherence by averaging coherence of the
strengthening condition across the frequency range 16–45Hz (the
union of frequency range strengthening > decaying and frequency range

strengthening > control; Fig. S18A). We found significant differences
between the two reactivation periods (Fig. S18B). Given that cortical
pattern reactivation was stronger for strengthening items during both
intervals, the reversed effect of hippocampal-cortical connectivitymay
reflect beneficial effects of early coupling and subsequent decoupling
between hippocampus and cortical areas.

Previous research suggested that both cortical ripples and HFB
signals coupled to the hippocampal ripple events can reflect
hippocampal-cortical information communication24,26,27. Therefore, in

order to further investigate the hippocampal-cortical interaction, we
tested whether cortical HFB activities were coupled with hippocampal
ripples during the two reactivations. The repeated measures ANOVA
indicated a significant difference between three conditions
(F(2,3276) = 47.858, p <0.001) during the first reactivation. Post-hoc t-
tests revealed that differences between two conditions were sig-
nificant in the three conditions (LME strengthening vs. decaying,
t(1092) = 9.064, p < 0.001; LME strengthening vs. control t(1092) = 5.943,
p <0.001; LME decaying vs. control t(1092) = −4.909, p <0.001; Fig. 5B).
Given that cortical-hippocampal coherence was notably enhanced
during the first reactivation, we further investigated the relationship
between coherence and cortical HFB coupled with the hippocampal
ripple. For this purpose, we selected contacts that showed coherence
above the median level for each subject. We then calculated the cor-
relation between the hippocampal ripple-coupled-HFB power and the
coherence (16-30Hz) within each subject. Notably, the intensity of the
HFB power was positively correlated with hippocampal-cortical
coherence (t(10) = 3.02, p =0.013, Fig. 5C; an example as in Fig. 5D).
In addition, coupled ripples between hippocampus and cortex were
more pronounced in strengthening items than decaying items during

Fig. 4 | Different ripple and spindle patterns during two reactivations.
A Memory change score (mean values ± SEM) in the memory strengthening con-
dition (red) and the memory decaying condition (blue), N = 11. B The heat map
shows the difference of reactivation (RSS, difference of retrieval-sleep similarity)
between strengthening and decaying items averaged across patients (N = 11). Two
temporal clusters (outlined in black, i.e., two shaded areas) survived after cluster-
based permutation test based on one-sided paired-sample t-test (p =0.018,
p =0.020, from left to right, respectively). C Example of detected spindle events in
cortical recordings during sleep. From top to bottom: raw cortical LFP; spindle-
band filtered LFP (12–16 Hz); spindle-band envelope used for spindle detection.
D Grand average peri-ripple field potential (left) and spectrogram (right) during
sleep (n = 6991 ripple events from 11 patients). E Grand average peri-spindle field

potential (left) and spectrogram (right) during sleep (n = 69,947 spindle events
from 11 patients). F Hippocampal ripple rate (mean values ± SEM) of the strength-
ening condition is significantly higher than that of the control conditions
(t(10) = 2.31, p =0.043, two-sided paired-sample t-test, N = 11) and showed an
increasing trend than that of the decaying conditions, but did not reach statistical
significance (t(10) = 2.174, p =0.054, two-sided paired-sample t-test, N = 11) during
the first reactivation (left), but not the second reactivation (right). G Cortical
spindle rate (mean values ± SEM) of the strengthening condition is significantly
higher than that of the decaying and control conditions during the second reacti-
vation (t(10) = 2.637, p =0.025; t(10) = 3.226, p =0.009, respectively, two-sided
paired-sample t-test, N = 11), but not the first reactivation (left). †p <0.1,
*p <0.05, **p <0.01.
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the first reactivation (LME strengthening vs. decaying, t(596) = 4.632,
p <0.001, Fig. S19). During the second reactivation, the repeated
measures ANOVA indicated a significant difference between three
conditions (F(2,3276) = 25.498, p <0.001). Post-hoc t-tests revealed that
the HFB power in the control condition was significantly higher as
compared to the strengthening condition and decaying condition
(LME control vs. strengthening, t(1092) = 5.394, p < 0.001; LME control vs.

decaying, t(1092) = 7.771, p <0.001). There is no significant difference
between strengthening condition and decaying condition (LME

strengthening vs. decaying, t(1092) = 1.536, p =0.125; Fig. 5F). The above
results suggested that for selectively enhanced memories,
hippocampal-cortical communication significantly increased during
the first reactivation, but significantly decreased during the sub-
sequent reactivation.

In sum, TMR cues played during NREM sleepmay enable selective
memory consolidation through alternating periods of coupling and
decoupling between cortex and hippocampus. Firstly, the hippo-
campus communicated with the cortex through coherence and cou-
pled neural oscillations (ripples & HFB). After that, the cortex and
hippocampus were decoupled, while cortical processing may proceed
independently, manifested by enhanced cortical spindle activity.
Based on the above results, we propose a dynamic model for memory
consolidation after TMR cues during NREM sleep (Fig. 6).

Discussion
This study showed that arbitrarily selected sound cues presented
during sleep did not uniformly impact memory storage, as there was
relative strengthening and decaying. Importantly, there were sig-
nificant differences in neurophysiological responses between
strengthening and decaying memories, even though both types were
cued the same number of times during NREM sleep. The memory-
strengthening items showed (a) stronger cortical reactivations in two
consecutivewindows, (b) increasedhippocampal ripple activity (ripple
rate & ripple-band power) during the first reactivation, and (c)
increased cortical spindle activity (spindle rate & spindle power) dur-
ing the second reactivation. Results revealed a complex temporal
dynamic between local processing (i.e., hippocampal ripples, cortical
pattern reactivation, cortical spindle activity, and cortical HFB) and
inter-regional interaction (i.e., hippocampal-cortical coupling).

Representation similarity analysis, as applied here, provides a
powerful way to probe the relationship between cortical reactivation
and memory enhancement. Our results showed that cortical reactiva-
tion differed between strengthening memories and decaying mem-
ories in ways that we interpret as reflecting additional processing that
supports consolidation. Memory reactivation (or “replay”) has long
been considered in connection with post-acquisition facilitation of
memory storage16,17,19,20. Furthermore, our study revealed multiple

Fig. 5 | Dynamic hippocampal-cortical synchronization during two reactiva-
tions. A Coherence (mean values ± SEM) between cortex and hippocampus is sig-
nificantly (yellow lines marked) enhanced for strengthening over decaying items
(16–30Hz) and control condition (20–45Hz) during the first reactivation
(p <0.001; cluster-based permutation test based on two-sided LME, N = 1093 con-
tacts).BHippocampal ripples coupledwith cortical HFB (mean values ± SEM) in the
strengthening condition are significantly stronger than that in both the decaying
and control conditions during the first reactivation (two-sided LME strengthening vs.

decaying: t(1092) = 9.064, p <0.001; two-sided LME strengthening vs. control:
t(1092) = 5.943, p <0.001; two-sided LME decaying vs. control t(1092) = −4.909,
p <0.001; N = 1093 contacts). C Significant positive correlation between
hippocampal-cortical coherence (16–30Hz) and hippocampal-ripples coupled
cortical HFB (t(10) = 3.02, p =0.013, two-sided paired-sample t-test,N = 11). Data are

presented asmeanvalues ± SEM.DAnexample subject shows a positive correlation
between hippocampal-cortical coherence and hippocampal-ripples coupled cor-
tical HFB. E hippocampal-cortical coherence (mean values ± SEM) is significantly
(yellow lines marked) enhanced for decaying than strengthening items (10–21Hz)
and control condition (10–21Hz) during the second reactivation (p <0.001; cluster-
based permutation test based on two-sided LME, N = 1093 contacts).
F Hippocampal ripples coupled with cortical HFB (mean values ± SEM) in the
strengthening and decaying condition are significantly weaker than that in the
control conditions during the second reactivation (two-sided LME control vs.

strengthening, t(1092) = 5.394, p <0.001; two-sided LME control vs. decaying,
t(1092) = 7.771, p <0.001; N = 1093 contacts). HC hippocampus.
*p <0.05, ***p <0.001.
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TMR-inducedmemory reactivations. This result suggests thatmemory
consolidation during NREM sleep may require multiple reactivations.
Until now, few studies have explored this hypothesis. Bendor and
Wilson trained rats in an auditory-spatial association task and found
that sound cues during slow-wave sleep induced reactivation of hip-
pocampal place cells. Such cue-evoked hippocampal reactivation
lasted for 10 s, until the next acoustic cue appeared19. Human elec-
trophysiological studies have also produced evidence that memory
reactivation triggered by TMR stimulation occurs more than once20.
Based on these findings, it has been proposed that memory enhance-
ment depends on the “echoing” of memory information in the
hippocampal-cortical loop12. A recent work found that spindle-locked
ripples in MTL were tightly related to the memory reactivation during
human NREM sleep52. However, they mainly focused on the early
reactivation after TMR cue (within 1.5 s), and did not investigate the
information interaction between the hippocampus and cortex during
memory reactivation.

Our study revealed a complex relationship between hippocampal
ripples and cortical pattern reactivation. Many previous researches
have argued that hippocampal ripples play an important role in
memory consolidation21,22,53,54. Previous literature suggests that hip-
pocampal ripples are associated with reactivation of mnemonic
information and information transmission between hippocampus and
cortex21,24,25. Disrupting sharp-wave ripples in the rat hippocampus by
electrical stimulation during post-training periods significantly impairs
spatialmemory55. Our study found nodifference in ripple rate between
wakefulness and NREM sleep, consistent with the findings in recent
studies3,56. However, other studies also reported significant differences
in ripple rate between two states57,58. This suggests that the difference
in ripple rate between wakefulness and NREM sleep remains incon-
clusive and requires further clarification in future studies. Human
electrophysiological studies have also confirmed that hippocampal
ripples and ripple-related reactivation during NREM sleep are asso-
ciated with post-sleep memory performance3,59. In addition, some
researchers found that hippocampal ripples and cortical reactivation
tend to occur closely in time41,49,60–63. However, considering the echo-
ing effect of TMR-induced reactivation, these previous studies have
not indicated whether there are hippocampal ripples during the

multiple cortical reactivation periods after TMRcue. Thepresent study
found robust hippocampal ripples and cortical spindles occurring in
the two cortical reactivations. The ripple rate of the strengthening
condition was significantly higher than that of the decaying and con-
trol conditions during the first reactivation but not the second reac-
tivation. Interestingly, cortical spindles exhibited the opposite
tendency. The spindle rate of the strengthening condition was sig-
nificantly higher than that of the decaying and control conditions
during the second reactivation but not the first reactivation. In addi-
tion, the time-frequency analysis found similar trends with the spindle
detection analysis. The spindle activity differences (strength-
ening>decaying) during the first reactivation were obviously lower
than the subsequent second reactivation. The results indirectly sup-
port the theoretical explanation of reactivation induced by TMR12.
TMR-induced memory enhancement may necessitate that the hippo-
campus first replays and transmits memory information to cortex in
the form of ripple messages. Subsequent cortical reactivation may
represent complete and independent replay of those memories.

The second core finding of the present study concerned the
complex temporal dynamics of coupling between hippocampus and
cortex. Compared with decaying memories, strengthening memories
showed stronger hippocampal-cortical coupling during the first reac-
tivation, an effect that reversed during the second reactivation. In
other words, the degree of coherence for strengthening memories
actually decreased from the first reactivation to the second reactiva-
tion. Previous studies have found that TMR can significantly enhance
hippocampal-cortical functional connectivity33–35. However, due to the
limited temporal resolution of fMRI, it remains unclear how
hippocampal-cortical connectivity changes when cortical reactivation
occurs. The present study showed that the hippocampal-cortical
coupling during memory reactivations is not constant and exhibit
complex temporal dynamic. More noteworthy was that during the first
reactivation period, cortical HFB and ripples coupled to hippocampal
ripples in the strengthening condition was significantly stronger than
that in the decaying condition, and it was positively correlated with
the degree of hippocampal cortical coupling. Both cortical
ripples and high-frequency broadband signal coupled to the hippo-
campal ripple events can reflect hippocampal-cortical information
communication24,26,27. This discovery may be consistent with some
assumptions of the system consolidation theory. This theory hypo-
thesized that newly encoded memories are initially distributed in the
hippocampus and cortex22,64,65. Subsequently, in NREM sleep, the new
memory needs to be transformed into a stable long-lasting memory
through hippocampal-cortical interactions. The hippocampus may
play a key role in integrating initial memory information, and trans-
mitting the integrated memory to the cortex1,12,22,31. It is worth noting
that coupling between hippocampus and cortex not only exists in
periodic oscillations (e.g., spindle), but also covers broadband activ-
ities (e.g., 16–45Hz). This may suggest the potential value of aperiodic
activities inmemory consolidation during sleep. Previous studies have
suggested that aperiodic activities have different characteristics from
periodic oscillations during both wake and sleep periods66–69. There-
fore, in future research, we can attempt to investigate the character-
istics of aperiodic neural activities during sleepmemory consolidation
process.

According to the above theoretical viewpoints and our empirical
results, we proposed the following multi-part scenario. During the first
reactivation, (i) strengthening memories showed more pronounced
hippocampal-cortical coupling and cortical HFB activities coupled to
hippocampal ripples, may imply associations between hippocampus
and cortex during memory reactivation. Then, (ii) hippocampal pro-
cessing led to integration of the components of the item-location
association, including the context of that learning, (iii) as manifested by
hippocampal ripples. During the second reactivation, (iv) hippocampal-
cortical couplingdecreased. At the same time, local spindle band activity

Fig. 6 | A neurodynamic model for selective memory consolidation
during sleep.After TMRcue onset,we observed two consecutive timeperiodswith
significant cortical pattern reactivation. Hippocampal ripple rate significantly
increases during the first reactivation. Meanwhile, there exists stronger
hippocampal-cortical interaction, including hippocampal-cortical coherence and
co-occurrence of hippocampal ripple and cortical HFB activity. During the second
reactivation, the cortex and hippocampus is decoupled, perhaps allowing cortical
processing to proceed independently, manifested by enhanced cortical spindle
activity. Note that the cortical positions shown in Fig. 6 are only for illustration
purposes. HFB: high-frequency broadband. TMR: targeted memory reactivation.
Note. Schematic brain reprinted from scidraw.io (Chilton, J. (2020). Brain outline.
Zenodo. https://doi.org/10.5281/zenodo.3925989). CC BY.
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in cortex increased, (v) maintaining and strengthening the cortical
representations. That is, the hippocampus may have completed infor-
mation integration and transmission during the first reactivation; sub-
sequently, there was no need for further hippocampal information
transmission, as the cortical representation was replayed independently
in the service of improving long-lasting storage.

Importantly, behavioral analysis showed that TMR benefits were
more apparent for items with low pre-sleep accuracy. The performance
difference before sleep could be one driving force for later effects during
sleep. Previous TMR studies have produced similar results36,37, and this
effect may have multiple causes. One factor likely is that enhanced
accuracy after sleep in those trials may reflect regression to the mean.
Correspondingly, reduced accuracy after sleep for trials with high pre-
sleep accuracy could also reflect regression to the mean, indicating that
the memory differences between the two critical conditions could
entirely reflect measurement variability. However, this factor cannot
account for the present results because neural correlates of memory
change would not be expected if memory change was due merely to
suchunsystematicfluctuations in performance. Another factor described
in prior studies is that gains from TMR tend to be more apparent for
weak memories than for strong memories36,70. Notably, the control ana-
lysis showed that though two groups of trials showed significant differ-
ences in test accuracy at the pre-sleep stage, we did not find a significant
reactivationdifference if the twogroupsdidnot differ inmemory change
(Fig. S13). The evidence thus indicates that the reactivations during TMR
period supported selective memory consolidation process. The above
control analysis excluded its relationship with pre-sleep memory accu-
racy. It is worth noting that although iEEG recording in epilepsy patients
does provide rare opportunity to directly measure neurophysiological
responses. As widely understood, it is not possible to directly compare
iEEG results in those with versus without epilepsy due to the inability to
record the same intracranial EEG data from healthy individuals. There-
fore, the possibility that the results could be influenced by changes in the
epileptic brain cannot be ruled out. Therefore, when generalizing the
conclusions of the present study, we should be careful of this limitation.

For intracranial EEG recording, there are differences in the num-
ber and position of electrodes for each subject, which limits the sta-
bility of RSA analysis (especially for item-level similarity analysis). In
addition, when conducting experiments in the bedside, it is difficult to
control factors such as the sleep stages (NREM 1–3) on which the TMR
cues were delivered and the phases (up/down states) of the SO on
which the TMR cues were delivered. Considering the limitations, in
future, we will use more sophisticated recording method (such as
single-neuron recording) and close-loop TMR intervention to test the
stability of multiple reactivations phenomena. Furthermore, the cou-
pling of slow waves, spindle, and hippocampal ripples plays an
important role in memory consolidation. In our data, we observed a
clear coupling between these three oscillatory events during TMR
(Fig. S21). However, due to the low incidence of coupling events
(Table S5), it wasdifficult to analyze the triple-coupling contribution to
memory effects. To precisely test this question, future studies may
reduce the amount of items and increase the number of trials.

In sum, our findings suggest that cortical reactivation and
hippocampal-cortical interactions support memory enhancement. A
complex temporal dynamic between hippocampus and cortex mani-
fested in neural patterns during NREM sleep in our study. Firstly, the
hippocampus integrated and transmitted information with the cortex
through functional connectivity and coupled neural oscillations, and
then the cortex independently processed memory representations to
support long-lasting memory storage.

Methods
Participants
Eleven patients (2 females and 9males; mean age ± standard deviation
(SD): 23.9 ± 5.4 years) withmedically refractory temporal lobe epilepsy

were recruited in the current study at Beijing Sanbo brain hospital.
They voluntarily participated in this study without compensation.
They were stereotactically implanted with depth contacts to identify
epileptogenic zones. Demographic information for each patient is
shown in Table S1. All patients reported normal or corrected-to-normal
visual acuity and normal color vision. Informed consent was obtained
from all participants and study procedures were approved by the
ethical committee of Beijing Sanbo brain hospital.

Experimental task
We used an object-location association task adapted from that used in
prior TMR studies13,33,34. Participants learned to associate each of 50
unique objects (small squares with a side length of 2.3 cm) with a
specific location on a grid displayed on a monitor (13.6 cm square). At
the same time, each object was pairedwith a characteristic sound (e.g.,
goblet with breaking sound). The experiment consisted of five con-
secutive stages: preview, learning, pre-sleep test, sleep, and post-sleep
test. The preview stage was to ensure that the subjects understood the
experimental instruction and the unique locations of each object. In
the learning stage (including study and retrieval phase), participants
attempted to place each object in the correct location (i.e., retrieval
phase). Trials were self-paced and terminated after the participant
confirmed object placement by a button press. The object was then
displayed in the correct location for 3000ms as the feedback (i.e.,
study phase). Following the procedures in a previous study13, partici-
pants completed several rounds of learning with items in random
order until all objects were placedwithin 3.4 cmof the correct location
on two consecutive rounds. If an object was placed correctly on two
consecutive rounds, it did not appear in the subsequent round.
Approximately 40min after the learning stage, during which time
participants were allowed to rest, the pre-sleep test was administered
with all 50 objects and no feedback, providing pre-sleep memory
results.

After this test, participants went to sleep. The experimenter
turned off the lights and played white noise at a low intensity
(~55 dB sound-pressure level) from a Bluetooth speaker placed
~0.5 m from the participant’s head. When the participant entered
the first NREM stage 2 or 3 (detected using scalp EEG, see below), a
randomized stimulus sequence including 25 old cued sounds and
25 new standard sounds (all guitar strum) was presented. The 25
cued sounds presented during NREM sleep were randomly chosen
for each participant with the requirement that pre-sleep test
accuracy was matched for cued and un-cued objects (all p > 0.8).
The interval between two sound onsets was about 5.5 s. Each
sound stimulus was presented 6 times (total TMR stimulation time
about 30min) during NREM sleep (for the first two participants in
Table S3, the cued sound stimuli were played 3 and 4 times,
respectively). When the participants woke up the next morning,
all object locations were tested as in the pre-sleep test. The
average time spent by participants in the experiment as follows:
learning, 29.9 ± 9.4minutes; pre-test, 5.9 ± 0.6min; post-test,
5.8 ± 1.1 min.

Electrophysiological recordings
The surgical implantation of electrodes was performed purely based
on clinical demands. Intracerebral multiple-contact electrodes (8–16
contacts; length: 2mm, diameter: 0.8mm, distance 1.5mm; Huake-
Hengsheng Medical Technology Co. Ltd, Beijing, China) were implan-
ted with a robot-assisted stereotactic surgery system. Intracranial EEG
and polysomnographic recordings were obtained with a Nicolet sys-
tem (128 channels, sampling rate: 512Hz; Thermo Nicolet Corpora-
tion). No seizure occurred during the task period and sleep. All data
analysiswasperformed inMATLAB (MathWorks Inc., Natick,MA) using
EEGLAB71, Fieldtrip72, analysis scripts published in previous studies41,73

as well as custom-developed scripts in this study.
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Intracranial electrode localization
To determine the exact anatomical placement of the electrodes, post-
implantation CT images were co-registered to pre-operative T1-
weighted MR images using FreeSurfer (v6.0.0, http://surfer.nmr.mgh.
harvard.edu/). We reconstructed the implanted electrodes using pre-
viously published localization software74 and visually verified the
accuracy of electrode contacts localization. Then, all coordinates were
mapped into Montreal Neurological Institute (MNI) standard space.
The exact contact locations in the hippocampus were identified ana-
tomically in each patient using FreeSurfer’s parcellation algorithm75

and ascertained by visual inspection.

IEEG data preprocessing
Similar to a previous study3, we re-referenced all iEEG data (except for
hippocampal contacts) by the average activity across all contacts, to
optimize the specificity of representational patterns at individual
contacts. For each hippocampal contact, a reference signal from a
nearby white-matter contact was subtracted to eliminate common
noise41. For each participant, we extracted data during the learning
stage and during the TMR stage (10 s before the first stimulus to
10 seconds after the last stimulus). Power-line interference noise (50,
100 and 150Hz) was eliminated by a notch filter (Hamming windowed
FIRfilter; EEGLAB:pop_eegfiltnew function). Epileptiformspikes in each
hippocampal contact were automatically detected using the ISARG
(Intracranial Signal Analysis Research Group) method with default
settings73 (http://isarg.fel.cvut.cz, version 16).We removed ripples that
occurredwithin a time interval of 100ms from each epileptiform spike
to avoid detections of artifact ripples. We also presented the grand
average of the epileptiform spike-locked raw signal and spectrogram
for all detected IEDs during NREM sleep and wakefulness (Fig. S22).

EEG recordings for off-line sleep stage identification
To precisely identify each sleep stage, additional electrodes were
placed on the scalp according to the 10-20 system and on the face for
monitoring electrooculographic (EOG). In all, there were eight scalp
electrodes (F3, F4, C3, C4, O1, O2, A1, A2), and two EOG electrodes (at
the outer canthi of both eyes). If one of these electrodes could not be
placed due to clinical reasons, we selected a nearby electrode to
replace it (6 patients). To verify that the majority of cues were pre-
sented during NREM sleep, offline sleep staging was performed
according to the criteria of the American Academy of Sleep Medicine
(AASM) for non-overlapping time windows of 30 s, as shown in
Table S3.

Index of memory change score
For each item, we calculated the memory change score according to
three positions: the correct position for each item, the indicated
positionduring thepre-sleep test and the indicatedpositionduring the
post-sleep test.

Memory change scoreði, jÞ =
aði, jÞ � bði, jÞ
aði, jÞ +bði, jÞ

ð1Þ

aði, jÞ: Euclidean distance between the indicated position during
the pre-sleep test and the correct position for jth participant’s ith item
(i = 1, 2, …50; j = 1, 2, …11). bði, jÞ: Euclidean distance between the indi-
cated position during the post-sleep test and the correct position for
jth participant’s ith item. For 25 cued items of each subject, we clas-
sified the top 1/3 (rounded up to 9 items) as memory-strengthening
items and the last 1/3 (rounded up to 9 items) as memory-decaying
items according to their relative memory change score. The rest (7
items) are used as middle items (Fig. S1B).

Off-line ripple detection
Ripple detection was performed using electrode contacts located in
the hippocampus (the exact anatomical location is depicted in Fig. 1F).
For each participant, the hippocampal contact with the highest prob-
ability of being located in the hippocampus during the automatic brain
segmentation procedure was used for ripple detection. We used pre-
viously published ripple detection scripts to detect ripple events41

both during learning and sleep. Before the detection of ripple events,
we implemented a process to reduce common noise by subtracting a
reference signal obtained from a nearby white-matter contact. Sub-
sequently, we filtered the local field potentials (LFPs) within the fre-
quency range of 70 to 180Hz using a Hamming windowed sinc FIR
filter with a transition bandwidth of 5Hz. We then calculated the
analytic amplitude of the LFPs using a Hilbert transform. To minimize
ripple-rate-induced biasing, the extreme values were robustly esti-
mated using Least-Median-Squares and clipped to 4 SD above the
mean value. After clipping the extreme values, the clipped signal was
then squared and smoothed using a FIR low-pass filter with a 40Hz
cutoff frequency. Ripple events were identified from the original signal
(squared but unclipped) when they exceeded 4 SD above the clipped
signal. Event durationwas expanded until ripple power fell below 2 SD.
Events that were shorter than 20 milliseconds or longer than 200
milliseconds were excluded from further analysis. To avoid inclusion
of possible pathological events, we removed any ripple events that
occurred within 100ms from inter-ictal epileptic discharges (IEDs).

Off-line spindle detection
Spindle events during TMR stage were detected for each gray-matter
contact based on established detection algorithms76,77. To enhance
data quality, we initially applied a noise reduction technique by
subtracting a reference signal obtained from a nearby white-matter
contact. Subsequently, the data underwent a bandpass filtering
operation within the frequency range of 12 to 16Hz (Hamming
windowed sinc FIR filter). Next, we used Hilbert transform to obtain
the instantaneous amplitude and computed a smoothed envelope
with convolving by a Gaussian window (200ms). The spindle
amplitude criterionwas then established as the 75th percentile of this
smoothed envelope. Finally, spindle events were identifiedwhenever
the signal exceeded this threshold for a duration of more than
0.5 seconds but less than 3 s.

Ripple and spindle occurrence rate
To calculate the ripple and spindle occurrence rate, we assigned a
value of 1 to the timepoints where the ripple/spindlewas detected and
0 otherwise. Subsequently, we calculated themean values across trials
for each time point within the time range of [0–5 s] relative to the TMR
cue onset as in Fig. S14 ([0–2 s] relative to the cue onset for learning
ripple events as in Fig. S2). To eliminate the impact of individual var-
ianceon statistics, we normalized the ripple/spindle occurrence rate at
each contact for each subject.Wedivided the occurrence rate after the
cue onset by the average occurrence rate during the corresponding
phase (e.g., awake ripple ratewasdividedby average ripple occurrence
rate during learning stage).

Time-frequency analysis
Spectral decompositionof LFP data (learning stage and TMR stage) for
all cortical and hippocampal contacts was done using Morlet wavelets
(seven cycles, frequency bin: 2 Hz, step size: 20ms) implemented in
Fieldtrip. This spectrum was used to perform RSA. We used a finer
time-frequency resolution (frequency bin: 0.5 Hz, step size: 10ms) to
obtain the cue-triggered power response during TMR stage. As a pre-
vious study had found the cue-evoked increase of pattern replay lasted
for 10s19, it was difficult to find a pure baseline before each cue in this
study. Therefore, we normalized the spectrum using Z-score across all
time bins at each frequency and contact (i.e., first performing log
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transformation, then subtracting the mean value and dividing by the
standard deviation across time).

The high-frequency broadband signal has been established as a
reliable electrophysiologicalmarker for local neuronal spiking activity,
as indicated in previous studies78–80. Consistent with previous study26,
we calculated the mean normalized power within the HFB
(60–160Hz), averaged over a time window spanning from −250ms to
+250ms relative to the occurrence of hippocampal ripple events. This
approach was employed to capture ripple-coupled cortical activations
in the current study.

Representational similarity analysis
Asprevious studies used slightly different frequencybands to generate
distributed brain patterns (30–90 Hz3 or 60–140 Hz41), we first deter-
mined the optimal frequency band by identifying item-specific activity
patterns during learning stage (Fig. S20). Then we identified item-
specific activity patterns, using a similar approach as in a previous iEEG
study3. First, we applied an average reference including all iEEG con-
tacts except for hippocampal contacts, in order to exclude an influ-
ence of hippocampal ripple activity. Second, we conducted a time-
frequency transformation using Morlet wavelets to extract power
values. Third, we normalized the iEEG power using Z-score across all
time bins at each frequency and averaged the Z-score power within
50–140Hz. Fourth, the normalized data were smoothed by a 4-point
triangular window, resulting in a matrix of normalized 2D data [time ×
contacts] for learning stage and TMR stage which was used in the
following analysis.

Retrieval-retrieval similarity (RRS) during learning stage. Previous
studies indicated that ripples played an important role in the reacti-
vation of mnemonic information3,41,49. In current study, we found that
ripple rate increased when participants were asked to retrieve the
object location (Fig. 2F). We further investigated whether item level
representations can be observed around the occurrence of learning-
related ripples (LR-ripple), defined as ripples occurred within 1.5 s
window after image onset. We first extracted epochs of whole-brain
data during a period from 500ms before to 500ms after LR-ripple
onset, resulting in 2D data [time × contacts] for each trial (in cases
where multiple ripples occurred in one trial, we selected the first rip-
ple). Within-Item (WI) similarity was calculated as the whole-brain
pattern similarity between trial pairs with the same item in different
learning round, using Spearman’s correlations. Between-Items (BI)
similarity was calculated as the pattern similarity between trial pairs
with different items in different learning round. The number of trials
for each participant was reported in Table S6. All the similarity matri-
ceswere then Fisher Z-transformed. Subsequently, we averaged theWI
similarity and BI similarity across trial pairs within each subject and
compared them by conducting a paired-sample t-test across subjects.

Retrieval-sleep similarity (RSS) during TMR stage. We calculated
the representational similarity between cortical activity around LR-
ripple onset and cortical activity after TMR cues during sleep. As our
RRS analysis confirmed that the whole brain pattern around the
occurrence of hippocampal ripple contained item-specific informa-
tion, we further examined whether this item-specific information was
reactivated after TMR cues. Specifically, we first extracted epochs of
whole-brain data ±500ms around each LR-ripple onset, then corre-
lated it with high-gamma activity (50–140Hz) from TMR cue onset to
5000ms afterwards (Fig. 3A). All the similarity matrices were fisher
Z-transformed and smoothed by a 2D Gaussian smoothing kernel
(σ = 40ms) before further analysis. We then averaged data across all
LR-ripple epochs of the same item, resulting in 3D RSS data [items ×
timeripple × timecue].

Since the TMR was displayed for six rounds, we further checked
the stability of the reactivation pattern for each round. The stability of
the reactivation pattern was assessed by calculating the average Rho
between the RSS matrix and behavioral performance across subjects

for each round (Fig. S6). To evaluate the consistency between each
round and themain result, we correlated the RSSmatrix of each round
to the average RSS matrix of the rest five rounds. Rotations were
performed on the matrices, and the similarity was computed to gen-
erate a distribution of shuffled data (Fig. S7). We also evaluated the
stability of the reactivation pattern for individual subject using the
similar procedure (Fig. S8 and S9, respectively).

We used two approaches to investigate the relation between RSS
and behavioral performance: 1) we incorporated all items to compute
the Spearman correlation (Rho) between the RSS matrix and beha-
vioral performance for each subject. To assess the significance, a
cluster-based permutation test was performed by shuffling the mem-
ory change score within each subject and repeating the above proce-
dure 1000 times (Fig. 3). 2) According to each item’s memory change
score, we extracted RSS for strengthening and decaying items sepa-
rately (i.e., RSSstrengthening and RSSdecaying). Subsequently, we averaged
the RSSstrengthening and RSSdecaying across itemswithin each subject and
compared them by conducting a paired-sample t-test across subjects.
We shuffled the conditional labels 1000 times to obtain significant
clusters between RSSstrengthening and RSSdecaying (Fig. 4B).

Connectivity analysis
We quantified the synchronization of brain activity patterns during
TMRand assessed the difference between strengthening and decaying
item representations by calculating spectral coherence between all
hippocampal contacts and cortical contacts. For each participant, the
data matrix (contacts × time × TMR cues) was extracted between the
onset of TMR cues to 5000ms afterwards. Then this data matrix was
divided into a datastrengthening (contacts × time× epochsstrengthening) and
a datadecaying (contacts × time × epochsdecaying) depending onmemory
change scores. Similarly, weused the trials of guitar strumasdatacontrol
(contacts × time × epochsguitar strum). For each participant and each
condition (strengthening, decaying and control), the number of trials
between the conditions was balanced (Table S6). The coherence
between time-series of x(t) and y(t) was then estimated as a function of
frequency:

Cðx, y, t, f Þ= jSðx, y, t, f Þj2
Sðx, x, t, f ÞSðy, y, t, f Þ ð2Þ

where S x, x, t, fð Þ and S y, y, t, fð Þ are the power spectral densities of x-
th hippocampal contact and y-th cortical contact in the t-th time win-
dow (window size: 1000ms, step size: 62.5ms), respectively, and
S x, y, t, fð Þ is the cross-spectral density between two contacts in t-th
time window. We averaged the coherence across hippocampal
contacts to yield hippocampal-cortical coherence (contactscortex ×
time × frequency).

To investigate the difference in coherence between the
strengthening, decaying and control condition, we selected two tem-
poral windows according to 1st reactivation and 2nd reactivation
found in the analysis of RSA (Fig. 4B, 1st reactivation: 1.6–2.6 s and 2nd
reactivation: 2.8–3.8 s). Then hippocampal-cortical coherence was
averaged across time range and cluster-based permutation test was
performed to find significant frequency bands (Fig. 5A, E).

Statistical analysis
To handle the case where the predictor variables were not
independent81, we used the linear mixed effect model (LME) (fitlme
function in MATLAB) and the restricted maximum likelihood method
for statistical analysis. To assess the effects of condition (e.g.,
strengthening versus decaying) on coherence and cortical HFB power,
we implemented an LMEmodel with subjects and contact pairs as two
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(nested) random effects:

Y � condition+ 1 j subjectsð Þ+ ð1jsubjects : contactsÞ ð3Þ

where the dependent variable Y is either coherence orHFB power. The
condition variable is coded as 0 for decaying and 1 for strengthening.

For cluster-based permutation tests, we first performed paired t-
tests, LME model or nonparametric test and then identified clusters
based on a threshold (i.e., for ripple rate and RSA: p <0.05; others:
p <0.01) and summed the t-valueswithin the clusters.We then shuffled
condition labels, repeated the above operation 1000 times, and
extracted the largest cluster in each permutation. Finally, we deter-
mined the significance of an original cluster’s t-value according to its
order among the 1000 permutations.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The processed data in this study are available via: https://doi.org/10.
5281/zenodo.14583770. The raw data are available via: https://doi.org/
10.5281/zenodo.14885381. Source data are provided with this paper.

Code availability
We used the Matlab code from https://doi.org/10.5281/zenodo.
3259369, based on Yitzhak Norman and associates’ work to detect
ripple. Code of representational similarity analysis and statistical test
are available via: https://doi.org/10.5281/zenodo.14583770. The code
to reproduce all figures is also included in the link above.
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