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Several studies have shown white matter (WM) abnormalities in Alzheimer’s disease (AD) using diffusion tensor imaging (DTI).
Nonetheless, robust characterization of WM changes has been challenging due to the methodological limitations of DTI. We applied
fixel-based analyses (FBA) to examine microscopic differences in fiber density (FD) andmacroscopic changes in fiber cross-section (FC)
in early stages of AD (N= 393, 212 females). FBA was also compared with DTI, free-water corrected (FW)-DTI and diffusion kurtosis
imaging (DKI). We further investigated the correlation of FBA and tensor-derived metrics with AD pathology and cognition. FBA
metrics were decreased in the entire cingulum bundle, uncinate fasciculus and anterior thalamic radiations in Aβ-positive patients
with mild cognitive impairment compared to control groups. Metrics derived from DKI, and FW-DTI showed similar alterations
whereas WM degeneration detected by DTI was more widespread. Tau-PET uptake in medial temporal regions was only correlated
with reduced FC mainly in the parahippocampal cingulum in Aβ-positive individuals. This tau-related WM alteration was also
associated with impaired memory. Despite the spatially extensive between-group differences in DTI-metrics, the link between WM
and tau aggregation was only revealed using FBA metrics implying high sensitivity but low specificity of DTI-based measures in
identifying subtle tau-related WM degeneration. No relationship was found between amyloid load and any diffusion-MRI measures.
Our results indicate that early tau-related WM alterations in AD are due to macrostructural changes specifically captured by FBA
metrics. Thus, future studies assessing the effects of AD pathology in WM tracts should consider using FBA metrics.
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Significance Statement

Diffusion tensor imaging (DTI) has been widely used to study white matter (WM) integrity in Alzheimer’s disease (AD).
However, the methodological shortcomings of DTI limit an accurate biological interpretation. We used fixel-based analysis
(FBA) to assess fiber-specific WM degeneration and its correlation with the underlying pathology and cognitive symptoms in
early AD. Our results revealed that elevated tau- but not Aβ-PET uptake in the medial temporal structures was correlated with
atrophy of the parahippocampal portion of the cingulum bundle. The tau-related damage in this WM bundle was further
linked to memory deficits. Importantly, the tau-WM correlation was not detected by tensor-derived measures. These findings
suggest that FBA metrics may serve as a biomarker for early detection of tau pathology in AD.
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Introduction
Alzheimer’s disease (AD) is characterized by the accumulation of
amyloid-beta (Aβ) plaques and neurofibrillary tangles of hyper-
phosphorylated tau (Jack et al., 2013; Hansson, 2021). Although
AD is typically considered a gray matter (GM) disease (Bejanin
et al., 2017; Iaccarino et al., 2018), increasing evidence shows
concomitant white matter (WM) abnormalities (Englund,
1998; Amlien and Fjell, 2014; Lo Buono et al., 2020).
Diffusion-weighted MRI (dMRI) has enabled noninvasive inves-
tigation of WM integrity in AD, with most studies relying on
diffusion tensor imaging (DTI; Amlien and Fjell, 2014)].
However, the literature describing the link betweenWM changes
and AD pathology is conflicting. While the results of some DTI
studies suggest an association between lower mean diffusivity
(MD) and higher fractional anisotropy (FA) with Aβ pathology
in early AD (Racine et al., 2014), others have shown an opposite
correlation (Chao et al., 2013). Conversely, there are reports of no
association between Aβ and WM alterations (Kantarci et al.,
2014; Strain et al., 2018). These inconsistent findings may reflect
cohort-specific differences, but they might also arise from the
methodological challenges of DTI that in turn may affect its bio-
logical specificity. Due to partial volume effects, the DTI metrics
are not specific to a single tissue type. This is particularly relevant
in AD where vasogenic edema results in an increase in extracel-
lular free water (FW) in the brain. This flaw can be mitigated
using FW-DTI providing more accurate tissue-based metrics
(Pasternak et al., 2009; Bergamino et al., 2021). Further, diffusion
in DTI is modeled based on the assumption that the displace-
ment of water molecules has a Gaussian distribution while this
assumption may not hold in biological tissues (Jensen and
Helpern, 2010). The contribution of non-Gaussian diffusion
can be quantified using diffusion kurtosis imaging (DKI), which
is shown to be potentially more sensitive than DTI in detecting
microstructural WM changes (Gong et al., 2013; Zhang et al.,
2021).

Another limitation of DTI is the inability to resolve multiple
fiber orientations in regions with crossing fibers (Jeurissen et al.,
2013). The fixel-based analysis (FBA) framework facilitates fiber-
tract–specific statistical comparisons (Raffelt et al., 2015, 2017)
using a higher-order diffusionmodel known as constrained sphe-
rical deconvolution (Tournier et al., 2007, 2008) that enables the
characterization of multiple fiber orientations in a voxel. FBA
provides metrics estimated from fixels, that is, distinct fiber pop-
ulations within a voxel. These quantitative metrics include fiber
density (FD) reflecting microscopic changes in intra-axonal
volume, fiber cross-section (FC), an index of macroscopic alter-
ations in a cross-sectional area perpendicular to WM bundles,
and a combined measure, FDC, as the product of FD and FC.
In the first application of FBA in patients with mild cognitive
impairment (MCI) and AD, Mito et al. (2018) found fiber-
specific alterations in tracts connecting key regions affected by
AD. However, they did not observe an association between
FBA metrics and Aβ accumulation. Furthermore, in their study,
the association between WM and tau pathology was not investi-
gated. The available studies on such associations are mainly
based on DTI and conducted on relatively small cohorts
(Strain et al., 2018; Carlson et al., 2021; Pereira et al., 2021).
Hitherto, two studies have assessed the association of FBA met-
rics with tau pathology reporting mixed results. Specifically, one
study has shown an inverse relationship between FC in the ven-
tral cingulum and increased tau-PET uptake in the entorhinal
cortex (EC; Luo et al., 2021) whereas in the other study,

tau-PET uptake was not associated with FBA metrics when
accounting for Aβ deposition (Dewenter et al., 2023). Given
those inconsistencies, we aimed to examine the extent of WM
degeneration in early AD and its correlation with the underlying
pathology and cognitive performance. This is particularly timely,
given that the emerging disease-modifying therapies targeting Aβ
and tau will likely be more effective during the early stages of AD
(Hansson, 2021) while effective markers of subtle neurodegen-
eration are still lacking. In this study, we focused on a large
cohort of nondemented individuals and applied FBA, DTI,
FW-DTI, and DKI to investigate potential early signs of WM
degeneration.

Materials and Methods
Participants. This study comprised cognitively unimpaired individ-

uals (CU) and MCI patients, recruited from the Swedish
BioFINDER-2 study (NCT03174938) that has been previously described
in detail (Leuzy et al., 2020; Palmqvist et al., 2020). The diagnosis of MCI
was made by physicians specialized in cognitive disorders, based on the
participants’ neuropsychological performance (Palmqvist et al., 2020).
They were further stratified into Aβ-negative or Aβ-positive groups
based on the CSF Aβ42/40 ratio (Pichet Binette et al., 2022). Note that
Aβ-negative MCI patients were not included in the present study. Of
484 initially included participants, a total of 91 individuals were excluded
due to excessive motion or other types of imaging artifacts (N= 13), evi-
dence of severe vascular copathology such as cerebral infarcts (N= 10),
and extensive white matter hyperintensities (WMH; N= 68) that can
affect the dMRI metrics (Svärd et al., 2017). Thereby, the final sample
size consisted of 393 individuals. To visually rate the severity of the
deep and periventricular WMHs, we used the Fazekas scale with scores
ranging from 0 to 3 (Fazekas et al., 1987). The average Fazekas score
in the excluded individuals was 2.73 (median and mode values, 3 and
3, respectively) indicating large confluent lesions. A summary of the par-
ticipants’ demographic and clinical characteristics is provided in Table 1.
All participants gave written informed consent. The study procedures
were in accordance with the Declaration of Helsinki and were approved
by the Ethical Review Board in Lund, Sweden.

Neuropsychological assessment. Different cognitive domains were
assessed in the present study. Memory performance was measured
using the 10-word delayed recall test from the Alzheimer’s Disease
Assessment Scale–Cognitive Subscale (ADAS-Cog). Cube analysis
from the Visual Object and Space Perception Battery (VOSP) was
used to examine visuospatial abilities. Finally, the difference in the
scores of trail making test (TMT) Parts B and A was selected as a mea-
sure of executive functions. Subtracting the time to complete Part A
from Part B reduces visuospatial and working memory demands, hence
providing a relatively pure indicator of executive/attention perfor-
mance (Tideman et al., 2022).

MRI acquisition and processing. All participants underwent
diffusion-weighted magnetic resonance imaging (dMRI) using a 3T
Magnetom Prisma scanner with a 64-channel receiver coil array, operat-
ing under syngo MR E11 software (Siemens Healthcare). The data were
acquired using a single-shot EPI sequence with a multishell scheme using
the following parameters: 2, 6, 32, and 64 gradient directions at b values
of 0, 100, 1,000, and 2,500 s/mm2, respectively; isotropic resolution,
2 mm3; phase-encoding direction, A-P; FOV= 220 × 220 × 124 mm3;
multiband factor = 2; parallel imaging factor = 2; TR= 3,500 ms; TE =
73 ms; and TA= 6:23 min. A second dMRI scan was also obtained
with a reverse phase-encoding and seven gradient directions (1 × b= 0
and 6 × b= 1,000 s/mm2) for correction of susceptibility-induced
distortions. Furthermore, a whole-brain T1-weighted scan (MPRAGE
sequence, TR= 1,900 ms, TE = 2.54 ms, voxel size = 1 × 1 × 1 mm3,
FOV = 256 × 256 × 176 mm2, TA = 5:15 min) and a T2-weighted
FLAIR scan (TR=5,000 ms, TE= 393 ms, TA=4:37 min, same resolution
and FOV as for the T1-weighted image) were acquired.
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Preprocessing of dMRI data comprised denoising and Gibbs
unringing implemented via DIPY tools “dipy_denoise_patch2self” and
“dipy_gibbs_ringing” (Garyfallidis et al., 2014; Fadnavis et al., 2020),
susceptibility off-resonance distortion, eddy current and head motion
correction using FSL routines “topup” and “eddy_cuda” with outlier
replacement (Andersson et al., 2003; Andersson and Sotiropoulos,
2016), and bias field correction via “dwibiascorrect” function in
MRtrix3 (Tournier et al., 2019). Note that the head motion estimates
were comparable across groups (Aβ-negative CU: mean = 0.4979 mm,
SD=0.2572 mm; Aβ-positive CU: mean= 0.4579 mm, SD= 0.2027 mm;
and Aβ-positive MCI: mean = 0.5604 mm, SD= 0.2671 mm). Although
all the above preprocessing steps can be performed with MRtrix3 tools,
we chose to apply the denoising algorithm of DIPY as it does not
make any prior assumptions about the signal structure and only relies
on the randomness of the noise (Fadnavis et al., 2020).

dMRI data were then quality controlled at a subject level using the
FSL tool “eddy_quad.” WMHs were automatically segmented in
FLAIR images using the lesion prediction algorithm implemented in
the lesion segmentation toolbox (https://www.applied-statistics.de/lst.
html) of SPM. Moreover, gray matter (GM) and total intracranial vol-
umes were estimated as part of T1-weighted image processing in
FreeSurfer (v6; https://surfer.nmr.mgh.harvard.edu/).

FBA processing. FBA was performed according to the recommended
pipeline of MRtrix3 (Raffelt et al., 2017; Tournier et al., 2019). Briefly,
tissue response functions for GM, WM, and CSF were computed using
“dhollander” algorithm (Dhollander et al., 2016) based on which an aver-
age response function was obtained per tissue type across participants.
Afterward, dMRI data were upsampled to an isotropic voxel size of
1.3 mm3. Fiber orientation distributions (FOD) were estimated via the
“multishell multitissue”-constrained spherical deconvolution (MSMT-
CSD) using the group-averaged tissue response functions (Jeurissen et
al., 2014). Subsequently, a multitissue informed log-domain intensity
normalization was applied to achieve comparable FOD amplitudes
between participants. Next, in accordance with previous studies (Mito
et al., 2018; Lyon et al., 2019; Zarkali et al., 2020; Savard et al., 2022)
and based on MRtrix3 recommendations, an unbiased center-specific
WM FOD template was generated from 30 randomly selected represen-
tative participants to which all individual FOD images were nonlinearly
registered. The resulting transformed FODs were segmented to create
discrete fixels. FD was calculated as the integral of the warped FOD

lobe corresponding to each fixel. FC was derived from the warp fields
computed during the registration of individual FODs to the template
space. The FC values were then log-transformed for downstream analysis
to ensure that the data were centered around zero. A combined measure
incorporating both the above metrics, that is, FDC, was computed as the
product of FD and FC (Dhollander et al., 2021). Finally, whole-brain
probabilistic tractography was performed on the FOD template where
initially 20 million streamlines were generated and subsequently filtered
to 2 million streamlines using spherical deconvolution informed filtering
of tractograms to reduce reconstruction bias (R. E. Smith et al., 2013).
Connectivity-based fixel enhancement (CFE) using the template tracto-
gram and nonparametric permutation testing with 5,000 permutations
were performed for statistical analysis (Raffelt et al., 2015).

DTI, FW-DTI, and DKI processing. To compare the results from
FBA-derived metrics with more commonly used voxel-averaged mea-
sures, the preprocessed dMRI data were additionally fitted with tensor-
derived models. Given that DTI and FW-DTI are traditionally applied
to dMRI data with a lower number of gradient directions and b values,
the 64 volumes with b= 2,500 s/mm2 were not included in these analyses.
DTI-derived metrics including FA and MD were quantified via the
“dipy_fit_dti” command of DiPY using weighted least squares regression.
FW-DTI measures, that is, FAt, MDt, and FW images were estimated
with a bitensor model that has been described previously (Pasternak et
al., 2009), implemented using an in-house MATLAB script. Since DKI
requires multishell data, all volumes of the preprocessed dMRI data
were included in this analysis. DKI parameters such as FA(DKI),
MD(DKI), and mean kurtosis (MK) were calculated using the DIPY
module “reconst.dki” (Henriques et al., 2021). Afterward, all individual
tensor-derived maps were projected onto a standard space and skeleton-
ized using the tract-based spatial statistics (TBSS) toolbox in FSL
(S. M. Smith et al., 2006). Voxel-wise analysis on the skeletonized tensor-
derived metrics was conducted using FSL “randomise” function with
threshold-free cluster enhancement (TFCE) and 5,000 permutations.
An outline of the processing scheme for dMRI metrics is depicted in
Figure 1.

PET acquisition and processing. Aβ-PET images were acquired on
a GE Discovery MI scanner (General Electric Medical Systems)
90–110 min after the injection of [18F] flutemetamol. Tau-PET scans
using [18F] RO948 were obtained on the same scanner 70–90 min post-
injection as previously described (Leuzy et al., 2020). PET and dMRI data
acquisitions were on average < 3 months apart from each other (time gap
between dMRI and Aβ-PET and dMRI and tau-PET: mean = 2.7; range,
0–23 months and mean = 2.5; range, 0–22 months, respectively).
Standardized uptake value ratio (SUVR) images were calculated using
the pons and inferior cerebellar GM as the reference regions for
Aβ- and tau-PET, respectively (Leuzy et al., 2020; Pichet Binette et al.,
2022). The acquired T1-weighted scans were used for PET-image core-
gistration and template normalization. Global Aβ burden was calculated
using a neocortical composite region of interest (ROI) including prefron-
tal, parietal, and temporal lateral regions as well as the anterior/posterior
cingulate and precuneus (Lundqvist et al., 2013; Landau et al., 2014). Tau
uptake was quantified primarily in the entorhinal cortex as one of the
most representative regions for early tau accumulation. Nonetheless,
other medial temporal lobe (MTL) regions, that is, hippocampus, amyg-
dala, and parahippocampus were also assessed for tau load. Note that
Aβ- and tau-PET scans were not available in a small subsample of
Aβ-negative CU (8 and 1), Aβ-positive CU (5 and 4), and Aβ-positive
MCI participants (8 and 2) individuals, respectively.

Statistical analysis. Between-group differences in dMRI-derived
metrics were assessed using GLM whose parameters were estimated
via CFE or TFCE (see FBA, DTI, FW-DTI, and DKI processing). To
explore the correlations between both Aβ- and tau-PET uptake and
dMRI-derived metrics, multiple univariate linear regression analyses
were performed in the Aβ-positive individuals (Aβ-positive CU and
Aβ-positive MCI). Similarly, the relationship between cognition
and FBA-derived metrics was examined at the whole-brain fixel level

Table 1. Participants’ characteristics

Aβ-negative CU Aβ-positive CU Aβ-positive MCI
StatisticN= 224 N= 91 N= 78

Age 65.41 (9.74) 69.97 (8.59) 71.97 (6.44) F= 19.26
p < 0.00001

Males/females 99/125 40/51 42/36 χ2 = 106.04
p< 0.00001

APOE ε4 carriers% 35.26% 70.32% 75.64% χ2 = 155.6
p< 0.00001

Years of education 12.87 (3.59) 12.48 (3.32) 12.50 (4.45) F= 0.507
p= 0.603

ADAS-Cog delayed word
recall

2.41 (1.71) 3.17 (1.96) 7.14 (2.20) F= 184.7
p< 0.00001

VOSP cube analysis 9.63 (0.85) 9.60 (1.12) 8.59 (2.27) F= 18.89
p< 0.00001

TMT (B–A) (seconds) 44.19 (27.06) 56.30 (52.14) 139.39 (109.87) F= 74.23
p< 0.00001

Global Aβ (SUVR) 0.47 (0.04) 0.65 (0.14) 0.78 (0.17) F= 248.4
p< 0.00001

Entorhinal tau (SUVR) 1.09 (0.12) 1.30 (0.26) 1.58 (0.37) F= 133.1
p< 0.00001

Data are presented as mean values followed by (standard deviations). Demographic and clinical variables were
compared between groups using ANOVA or χ2 tests. CU, cognitively unimpaired; MCI, mild cognitive impairment;
APOE ε4, apolipoprotein E ε4 allele; ADAS, Alzheimer’s Disease Assessment Scale–Cognitive Subscale; VOSP, Visual
Object and Space Perception Battery; TMT (B–A), trail making test Part B–A; SUVR, standardized uptake value
ratio. Note that a higher ADAS score indicates poor memory performance.
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and using ROI-based regression analyses performed in R (version 3.5.2).
For the ROI-based analysis, each cognitive domain was modeled as an
outcome measure and the FBA metrics as predictors. All models were
controlled for the potential confounding effects of age, sex, ICV, and
WMH quantified by total lesion volume. Years of education were
included as an additional nuisance covariate when testing the correla-
tions with cognitive performance. Moreover, the “mediation” package
in R was employed to assess whether the link between entorhinal tau
load and memory performance was mediated by GM atrophy of this
region or by fiber-specific WM alterations. Statistical significance was
set at FWE corrected threshold of pFWE < 0.05 for both FBA and
DTI-derived analyses. Likewise, the statistical threshold for the
ROI-based correlation analysis between FBA metrics and different cog-
nitive functions was set to a Bonferroni-corrected p-value of 0.05.

Results
Group differences in FBA- and tensor-derived metrics
Reduced FBA metrics in MCI patients
Whole-brain FBA revealed a significant decrease across all three
FBA metrics in Aβ-positive MCI patients compared with
Aβ-negative CU individuals (Fig. 2A). Lower FD was found in
the bilateral cingulum, parahippocampal (PH) parts of the cingu-
lum bundle, uncinate fasciculi, anterior thalamic radiation, and
forceps minor. FC exhibited a similar pattern of results although
primarily restricted to the left hemisphere. Analogous findings
were observed for FDC with a larger effect size. Likewise, when

the Aβ-positive MCI group was compared with Aβ-positive
CU participants a similar, although more restricted, pattern of
reduction in FBA metrics was found (Fig. 2B). In contrast, no
group differences in any of the FBA-derived measures were
found between Aβ-negative and Aβ-positive CU individuals.

Differences in tensor-derived metrics in MCI patients
Voxel-wise analysis using TBSS demonstrated a widespread
decrease in FA and an extensive increase inMDwhen comparing
Aβ-positive MCI patients with both Aβ-negative and Aβ-positive
CU individuals (Fig. 3). Performing the same comparison using
FW-DTI and DKI metrics revealed statistically significant differ-
ences only when employing FAt and MK. Reduction in FAt was
found when comparing Aβ-positive MCI patients with both CU
groups. However, MK reduction was observed only when the
Aβ-positive MCI patients were compared with Aβ-negative CU
(Fig. 3). No significant differences between Aβ-negative and
Aβ-positive CU individuals were found in any of the tensor-
derived metrics.

Correlation between dMRI-derived metrics and ADmolecular
pathology
Higher MTL tau load is only associated with decreased FC in the
parahippocampal segment of the cingulum bundle
Elevated tau load in the entorhinal cortex was associated with
lower FC almost exclusively in the bilateral parahippocampal

Figure 1. Overview of key processing steps of dMRI scans. Preprocessed dMRI data were used in FBA (left) and TBSS (right) frameworks. The preprocessing steps were identical for both
approaches. Note that for DTI and FW-DTI, volumes with high b values were discarded from the preprocessed data. Individual FODs were obtained using MSMT-CSD and coregistered to a
study-specific FOD template. Following the estimation of FBA metrics (FD, FC, and FDC) for each warped FOD image, a whole-brain tractogram was generated to conduct FBA statistics using
CFE. Tensor-derived metrics including FA, MD, MK, and FW volume were obtained using DTI, DKI, and FW-DTI respectively. FA and MD images were also computed for DKI and FW-DTI but not
displayed here. Voxel-wise analysis using TFCE was performed after the coregistration of DTI-derived metrics to the template space and their subsequent skeletonization.
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portions of the cingulum bundle (Fig. 4A). The observed findings
remained largely intact following additional adjustment for
global Aβ load (Fig. 4B). A further sensitivity analysis including
the GM volume of the entorhinal cortex in the model showed
consistent, although partially less widespread results (Fig. 4C).
Similarly, increased tau-PET uptake in the other MTL regions
was correlated with decreased FCmainly in the parahippocampal
part of the cingulum (Fig. 5). Note that, except for FC, no sign-
ificant correlation was found between other dMRI metrics and
tau pathology. Aβ-PET uptake in the neocortical composite
ROI was not correlated with any of the FBA- and DTI-derived
measures.

Correlations between tau-related WM alterations and
cognitive performance
Decreased FBA metrics are correlated with memory decline
To assess the clinical relevance of tau-associated WM alterations
and their impact on cognition, we obtained the mean values of
each FBA metric for all Aβ-positive participants from a mask
of fixels showing a significant correlation with the entorhinal

tau load (Fig. 4A). Worse memory performance correlated with
a reduction in all three FBA metrics (β=−0.25, −0.45, and
−0.36 and Bonferroni-adjusted p= 0.002, 3.9 × 10−5, 1.9 × 10−5

for FD, FC, and FDC, respectively; Fig. 6A). No relationship
was found between other cognitive domains and FBA metrics
(Bonferroni-adjusted p > 0.05) although a positive correlation
between FC and visuospatial performance was close to the sign-
ificance threshold (β= 0.22, uncorrected p= 0.039, Bonferroni-
adjusted p= 0.11; Fig. 6A). Similar findings were obtained
when assessing the correlation between cognition and fiber-
specific WM abnormalities related to tau accumulation in other
MTL regions (Fig. 6B–D). To test whether the observed associa-
tions are influenced by the selected masks of significant fixels, we
repeated the correlation analysis at the whole-brain level. In
line with our ROI-based results, poor memory performance
was correlated with reduced FC in the temporal segment of the
uncinate fasciculus (Fig. 6E). Next, bootstrapped mediation anal-
ysis with 10,000 iterations was performed to investigate the pos-
sible effects of the GM volume of the entorhinal cortex and the
observed tau-related WM alterations on the correlation between

Figure 2. Comparison of FBA metrics between (A) Aβ-negative CU and (B) Aβ-positive CU individuals with Aβ-positive MCI patients. Streamlines were cropped from the template tractogram
reflecting fixels with significantly reduced FD, FC, and FDC (left, middle, and right panels, respectively) in MCI patients. Significant streamlines are projected on the template glass brain
(pFWE < 0.05).

Figure 3. Voxel-wise comparison of tensor-derived metrics between (A) Aβ-negative CU and (B) Aβ-positive CU individuals with Aβ-positive MCI patients using TBSS. While FA, FAt, and MK
are decreased, substantially increased MD is observed in MCI patients (pFWE < 0.05). WM tracts with significantly altered metrics are projected on the template glass brain.
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entorhinal tau accumulation and memory deficits. The GM vol-
ume of the entorhinal cortex partially mediated the tau-memory
relationship (β= 0.83, CI = 0.1 to 1.34, p < 0.0001, 20% medita-
tion effect). However, fiber-specific WM alterations did not
have a significant mediation effect (β= 0.23 | 0.48 | 0.47,
CI = −0.3 to 0.67 | −0.21 to 1.28 | −0.23 to 1.13, p > 0.05 for
FD, FC, and FDC, respectively (Fig. 7).

Given that no tau-associated WM changes were observed
using tensor-derived metrics (see above, Correlation between
dMRI-derived metrics and AD molecular pathology), we did
not further investigate the correlation of tensor-derivedmeasures
with cognitive performance as we were primarily interested in

examining the clinical relevance of tau-related WM abnormali-
ties on cognitive functions.

Discussion
Combining advanced dMRI acquisition and analytical tech-
niques with PET imaging and neuropsychological measure-
ments, we sought to investigate the involvement of WM
degeneration in the early stages of the AD pathological cascade.
Using FBA, we observed degeneration at both micro- and mac-
roscopic scales mainly localized in the cingulum, its parahippo-
campal segment, and frontal WM tracts in Aβ-positive MCI

Figure 4. The inverse relationship between entorhinal tau uptake and FC. A, Higher levels of entorhinal tau are accompanied by lower FC in the parahippocampal segment of the cingulum
tract and inferior longitudinal fasciculus. The observed correlation remains significant although slightly decreased after controlling for (B) global Aβ load and (C) GM volume of the entorhinal
cortex. Significant streamlines are displayed on the template glass brain (pFWE < 0.05). Note that the regression models were controlled for age, sex, WMHs, and ICV in A–C but are not shown in
the figure legend for the sake of brevity.

Figure 5. Correlation of FC and tau load in (A) hippocampus, (B) amygdala, and (C) parahippocampus. With increasing tau burden in medial temporal lobe regions, FC decreases primarily in
the parahippocampal part of the cingulum (pFWE < 0.05). Note that after controlling for the global amyloid load (middle panel), the tau-FC correlation shrinks in the amygdala and becomes
insignificant in the parahippocampal cortex. Similarly, the observed correlations markedly decrease in the hippocampus and disappear in the other two regions following additional correction for
the corresponding GM volume (right panel). Note that all models are additionally adjusted for the confounding effects of age, sex, WMHs, and ICV.
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patients compared with Aβ-negative and Aβ-positive controls.
Similar patterns were found using metrics derived from DTI,
FW-DTI, and DKI with a larger spatial extent for the DTI
approach. Further elevated tau-PET uptake in medial temporal
lobe structures was specifically associated with macroscopic
changes of the parahippocampal part of the cingulum as indi-
cated by lower FC in Aβ-positive participants. The tau-related
alterations in this WM bundle were correlated with a decline in
memory performance. Importantly, this tau-WM correlation
was not captured by the tensor-derived measures. This implies
higher sensitivity of the FBA framework in detecting subtle
WM degeneration related to tau accumulation, lending support
to its utility as a potential biomarker for early detection andmon-
itoring of tau-related AD progression.

Whole-brain FBA analysis demonstrated decreased FD, FC,
and FDC in MCI patients in WM bundles associated with nodes
of the default mode network connecting temporal, parietal, and
frontal cortices. In the absence of resting-state fMRI data, these
findings might provide indirect support for the network-based
conceptualization of AD (Mito et al., 2018; Franzmeier et al.,
2020; Giraldo et al., 2022). Remarkably, FD reduction was spa-
tially more extensive than the decrease in FC suggesting that
microstructural changes of the affected WM tracts might be
more pronounced than the macroscopic alterations of the same
structures. Alternatively, this may indicate that microscopic
changes might precede macroscopic alterations. Additionally,
our FBA findings partially overlapped with between-group
differences obtained with other dMRI metrics. FAt and MK
showed a spatially comparable pattern of results, whereas FA

and MD revealed widespread abnormalities in the MCI patients
affecting many WM bundles. The limitations of DTI in the accu-
rate estimation of the metrics in regions with crossing fibers or
the contamination of these metrics by extracellular free water
might result in inflated statistical results (Tournier et al., 2008;
Pasternak et al., 2009). Nonetheless, the DTI-derived results of
the current study are consistent with past evidence reporting
WM alterations in early AD using DTI and its extensions
(Teipel et al., 2010; Falangola et al., 2013; Gong et al., 2013;
Metzler-Baddeley et al., 2014). By disentangling microstructural
alterations from macroscopic WM changes, FBA provides fiber-
specific insight, clarifying the present and previous DTI results
that are likely driven by a combination of these differences.
However, given the inherent differences between FBA- and
tensor-based metrics, caution should be exerted when comparing
the results of these approaches.

Contrary to our expectation, we did not observe a significant
increase in FW volume between Aβ-positive MCI patients and
either of the control groups whereas there are reports of higher
FW across several WM bundles in the AD continuum (Ji et al.,
2017; Mishra et al., 2020). This discrepancy might arise from
multiple factors including differences in the analysis approaches.
While some of those studies applied an ROI-based analysis, we
performed a voxel-wise comparison in our study. The latter
approach, taking into account the values of individual WM vox-
els across the brain, requires a more stringent correction for mul-
tiple comparisons compared with ROI-based approaches.
Furthermore, it has been shown that WMHs impact FW alter-
ations (Kamagata et al., 2022). As such, most of the studies

Figure 6. Associations of fiber-specific WM changes with cognition using ROI-based (A–D) and whole-brain FBA (E) analyses. Dot-whisker plots (A–D) show that all FBA metrics in WM masks
that indicate a significant association with tau load in the MTL regions are correlated with memory deficits (Bonferroni-corrected p< 0.05). E, At the whole-brain level, reduced FC in the temporal
segment of the uncinate fasciculus is linked to worse memory performance (pFWE < 0.05). Note that in the ROI-based analysis, the cognitive functions are treated as outcomes whereas in the
whole-brain fixel analyses they are predictor variables. All the regression models are corrected for the effects of age, sex, WMH, ICV, and education.

Figure 7. Flowchart illustration of the mediation analysis. The relationship between tau uptake in the entorhinal cortex (EC) is partially mediated by the GM volume of this region (mediation
effect, 20%, left panel), but no mediatory effect is observed for the fiber-specific WM alterations in the parahippocampal (PH) segment of the cingulum (right panel). C presents the direct effect
while C’ is the correlation strength after adjusting for the mediatory variables. C-C’ is, therefore, the mediation effect. The mediated effects of FBA metrics are condensed in a single schematic
diagram, distinguished by distinct colors.
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that have found elevated FW volume in the AD spectrum have
employed a normal-appearing WM mask in their analysis (Ji
et al., 2017; Dumont et al., 2019). In contrast, we took into
account the potential confounding effects of WMHs in the statis-
tical models. Such differences could have also contributed to the
contrasting results.

No group differences were found in FBA- or DTI-derived
metrics between Aβ-negative and Aβ-positive controls. While
there is no study with direct comparison of FBA measures in
those groups, conflicting results have been reported on group
differences in DTI-derived metrics. Specifically, one study has
shown increased MD in presymptomatic familial AD (Li et al.,
2015) possibly due to more aggressive degeneration in the genetic
form of the disease. On the contrary, another study has found no
significant differences in FA and MD between Aβ-positive and
Aβ-negative CU individuals (Fischer et al., 2015). Our findings
are in line with the latter indicating that amyloid burden per se
does not induce WM degeneration. These results also suggest
that in the absence of cognitive impairment, WM changes might
not be present or are too subtle to be captured with current dMRI
techniques.

Apart from the above between-group comparisons, all the
remaining analyses were conducted in a pooled group of
Aβ-positive individuals, that is, Aβ-positive CU and Aβ-positive
MCI patients as we were interested in examining the link
between dMRI metrics and amyloid, tau, and cognition in in
the AD continuum irrespective of the cognitive status of the
participants. To investigate the correlations with tau deposition,
we focused on regions in which tau accumulates early on in the
disease process, namely, the MTL. Interestingly, higher levels
of tau uptake within the entorhinal cortex and other MTL
structures were accompanied by reduced FC mainly in the para-
hippocampal segment of the cingulum bundle. A parsimonious
explanation for this finding is that increased tau burden provokes
axonal loss and WM atrophy that is captured by changes in FC.
Notably, the parahippocampal portion of the cingulum con-
nects key regions in the medial temporal and medial parietal
lobes that are known to be affected during the early phase of
AD pathogenesis (Zhou et al., 2008). The additional correction
for global amyloid load did not alter the observed correlation,
supporting an Aβ-independent relationship between tau accu-
mulation and WM degeneration. However, further adjust-
ments for the GM volume of the MTL regions decreased the
effect size suggesting that the tau-FC correlation is not entirely
independent from GM atrophy. Consistent with our findings,
prior works have identified a link between increased tau-PET
uptake and WM alterations in temporoparietal pathways
(Jacobs et al., 2018; Strain et al., 2018; Binette et al., 2021;
Luo et al., 2021).

Noticeably, the subtle correlation with tau pathology was not
detected by any of the tensor-based metrics. This is particularly
striking given that DTI measures, that is, FA and MD showed
spatially extensive WM abnormalities in Aβ-positive MCI
patients compared with either of the CU groups (Fig. 3), indicat-
ing that despite being highly sensitive, tensor-derived measures
may lack specificity which in turn affects their clinical relevance.
Nonetheless, the high sensitivity of tensor-based metrics could be
still advantageous in specific settings when the prediction of
future cognitive decline is required regardless of the underlying
etiology. In contrast, when it comes to specificity to the AD
pathology, FBA metrics or at least FC appear to be superior as
evidenced by our results on the association of tau deposition
with dMRI measures (Figs. 4, 5).

The correlation of cognitive performance with FBAmetrics in
the sameWM tracts (Fig. 6A–D) further supports the clinical rel-
evance of our results suggesting that the deterioration of memory
functions is at least partially related to both micro- and macro-
structural changes in WM. Moreover, mediation analysis was
employed to investigate the relative contribution of GM and
WM degeneration to memory impairment. Our results revealed
that GM atrophy in the entorhinal cortex rather than WM alter-
ation of the parahippocampal segment of the cingulum bundle
mediated the relationship between elevated tau load in the ento-
rhinal cortex and worse memory performance. These findings
suggest that although memory deficits are linked to a synergetic
degenerative process affecting both GM and WM, GM atrophy
seems to bear a more direct impact on the relationship between
tau accumulation and the deterioration of memory performance.
It is worth noting that these results were driven from a mask of
fixels being correlated with tau load in the entorhinal cortex
and other MTL areas (Figs. 4, 5). The rationale behind this
mask selection was to investigate the clinical relevance of
tau-related early WM alterations. Given that tau accumulation
starts in the MTL regions, our selected mask indicates early
WM changes. It is noteworthy that whole-brain analysis on the
association of FBA metrics with memory impairment revealed
analogous findings (Fig. 6E) albeit with a lower effect size. This
confirms that the observed correlation is independent of the
mask choice and further suggests that WM damage in the
MTL structures impacts memory decline.

Given that none of the DTI-derived metrics correlated with
tau uptake in the MTL regions, we did not further investigate
the associations of those measures with cognition. However,
ample evidence indicates strong correlations between compro-
mised WM integrity determined by alterations in FA, MD,
FW, MK, and axial kurtosis with cognitive impairment in AD
(Bosch et al., 2012, Gong et al., 2013, Ji et al., 2017,
Zavaliangos-Petropulu et al., 2019).

The lack of a correlation between amyloid accumulation and
WM degeneration, as suggested by our results, is in agreement
with previous reports using both DTI (Strain et al., 2018) and
FBA (Mito et al., 2018). In contrast, other studies have shown
either a negative or a positive correlation between FBA or tensor-
derived metrics with global Aβ-PET uptake in different stages of
AD (Binette et al., 2021; Luo et al., 2021; Benitez et al., 2022;
Dewenter et al., 2023). This discrepancy might be explained by
differences in the selection of participants or analytical approach.
Given the extensive differences in dMRI metrics observed
between Aβ-positive MCI and the Aβ-negative CU groups
(Figs. 2, 3), the absence of an association between Aβ pathology
and dMRImetrics in the Aβ-participants may suggest that, after a
certain threshold, the Aβ-induced damage to WM plateau while
alteration in dMRI metrics might be more influenced by tau
aggregation.

It may be questioned why between-group differences in FBA
and tensor-derivedmetrics (Figs. 2, 3) were not adjusted for addi-
tional covariates including global tau load and neuropsycholog-
ical measurements. Tau levels correlate with the stage of the
disease progression implying that Aβ-positive MCI patients
inherently have higher global tau uptake than Aβ-positive and
Aβ-negative CU individuals. Additionally, the MCI diagnosis
in our cohort was based on patients’ performance on neuropsy-
chological testing indicating that cognitive measures were
implicitly embedded in the grouping variable. To avoid multicol-
linearity and interdependence between predictive variables, we
opted not to incorporate them in the statistical models. Given
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that a critical step of whole-brain FBA analyses is the registration
to a template space, the choice of the template itself could affect
the results. We took an approach already employed by other
FBA-based studies (Mito et al., 2018; Zarkali et al., 2020) and fol-
lowed the recommended guidelines of MRtrix3. Nevertheless, to
verify that the findings were not affected by the specific template
of choice, we repeated the FBA processing by creating a new tem-
plate using 60 participants (20 from each group) and compared
FBA metrics between Aβ-negative CU and Aβ-positive MCI
individuals. The pattern of results in all three FBA metrics
(Fig. 8) was analogous to Figure 2A suggesting that FBA changes
in the MCI group are largely independent of the number of
selected FOD maps for template generation.

Since inaccuracies in the estimation of the response function
can affect FOD characteristics and downstream FBA estimates,
we acquired multishell dMRI with sufficient angular resolution
and applied MSMT-CSD to improve the accuracy of the esti-
mated response functions and subsequent FODs and FBA met-
rics (Dhollander et al., 2021). However, the angular deviations
of the FOD peaks in multishell data may depend on the
signal-to-noise ratio (SNR) level that is impacted by pathology
(Guo et al., 2021). This might influence the interpretation of
changes in FBA metrics. To ensure that the results are not biased
by low SNR, we excluded 91 individuals with imaging artifacts
and vascular and WM lesions (see Materials and Methods).

The cross-sectional nature of this study did not allow us to
determine the temporal relationship between WM alterations,
PET uptake, and cognitive measurements. Future studies are,
thus, warranted to elucidate the longitudinal correlations
between WM degeneration, molecular pathology, and clinical
performance.

Leveraging a large sample size, multishell dMRI data acquisi-
tion with high angular resolution, and multiple diffusion models
beyond DTI in conjunction with fixel-based and voxel-wise anal-
yses, the present study provides an exhaustive evaluation of WM
alterations and its relationship with the underlying pathology
and core cognitive symptoms in the AD continuum. In conclu-
sion, our results demonstrate that fiber-specific WM degenera-
tion revealed by FBA is closely linked to tau accumulation and
memory impairment even in the early stages of AD.

Data Availability
Anonymized data will be shared by request from a qualified
academic investigator for the sole purpose of replicating proce-
dures and results presented in the article and as long as data
transfer is in agreement with EU legislation on the general data
protection regulation and decisions by the Ethical Review
Board of Sweden and Region Skåne, which should be regulated
in a material transfer agreement.
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